### STATE OF SOUTH DAKOTA Richard Kneip, Governor

### DEPARTMENT OF NATURAL RESOURCE DEVELOPMENT Vern W. Butler, Secretary

GEOLOGICAL SURVEY
Duncan J. McGregor, State Geologist

Special Report 62

# GROUND-WATER INVESTIGATION FOR THE CITY OF HARROLD, SOUTH DAKOTA

by

Ronald Helgerson

Science Center
University of South Dakota
Vermillion, South Dakota
1975

This publication was printed at a cost of 33 cents per copy. A total of 250 copies were printed for dissemination of geologic information.

## CONTENTS

|                                                                                                        | Page |
|--------------------------------------------------------------------------------------------------------|------|
| INTRODUCTION                                                                                           | 1    |
| ACKNOWLEDGMENTS                                                                                        | 1    |
| LOCATION AND EXTENT OF STUDY AREA                                                                      | 1    |
| GENERAL GEOLOGY                                                                                        | 1    |
| Surficial deposits                                                                                     | 1    |
| Subsurface deposits                                                                                    | 1    |
| QUALITY OF GROUND WATER                                                                                | 1    |
| CONCLUSIONS AND RECOMMENDATIONS                                                                        | 1    |
| FIGURES                                                                                                |      |
| Map of eastern South Dakota showing the major physiographic divisions and location of the Harrold area | 2    |
| 2. Generalized geologic map of the Harrold area                                                        | 3    |
| 3. Test hole and water sample site location map for Harrold                                            | 5    |
| TABLE                                                                                                  |      |
| 1. Chemical analyses of water samples from the Harrold area                                            | 4    |
| APPENDICES                                                                                             |      |
| A. Logs of test holes in the Harrold area                                                              | 7    |
| B. Well records in the Harrold area                                                                    | 8    |

#### INTRODUCTION

This report contains the results of a special investigation conducted by the South Dakota Geological Survey from May 13 to May 16, 1975, in and around the city of Harrold, Hughes County, South Dakota. It is the 62nd in a continuing series of investigations to assist the cities in South Dakota in locating future water supplies.

Harrold now obtains water from a single well one-half mile south of the city. This well yields water from the alluvium and outwash in the floodplain of the South Fork of Medicine Knoll Creek.

Included in the survey of the Harrold area were: (1) geologic mapping of the area, (2) drilling of 10 auger test holes, (3) a well inventory, and (4) collection and analyses of 8 water samples.

#### **ACKNOWLEDGMENTS**

The cooperation of the residents of Harrold and the surrounding area is appreciated. The project was funded by the city of Harrold, the Oahe Conservancy Sub-District, and the South Dakota Geological Survey.

## LOCATION AND EXTENT OF STUDY AREA

Harrold is located in central South Dakota in Hughes County in the Missouri du Coteau division of the Great Plains physiographic province (fig. 1). The Harrold study area as used in this report includes a region that measures 2 miles north-south by 2 miles east-west.

#### GENERAL GEOLOGY

#### Surficial Deposits

Surficial deposits of the Harrold area include recent alluvium, glacial outwash, and glacial till (fig. 2). The glacial deposits in this area were formed during the last part of the Pleistocene Epoch of geologic time. These deposits can be divided into two basic groups, till and outwash. Till is deposited directly from the glacial ice and consists of sand, pebbles, and boulders randomly distributed in a matrix of clay. Outwash is a more homogenous deposit consisting primarily of sand and gravel with minor amounts of silt and clay that is deposited by streams flowing out from the melting glacial ice. Till and outwash are collectively known as glacial drift.

Recent alluvium is the material which has been deposited since the end of the Pleistocene Epoch. It consists of a thin veneer of sand, silt, and clay deposited on the floodplains of streams. The

combined thickness of drift and alluvium ranges from approximately 40 to 100 feet. Drillers' logs of the auger test holes which were drilled are listed in appendix A.

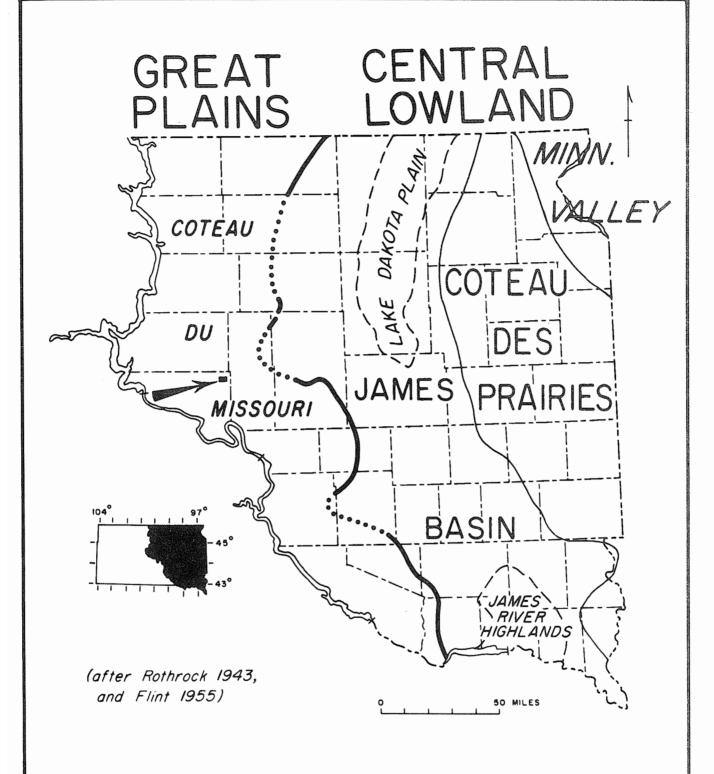
#### Subsurface Bedrock

No bedrock is exposed in the study area but available data from drill holes indicate an approximate thickness of 2,500 feet of Cretaceous and older rocks overlying the Precambrian basement rocks. The Cretaceous Dakota and Fall River Formations are the two major bedrock aquifers in the area and several wells are developed in these formations. The Dakota is encountered at a depth of approximately 1,400 to 1,500 feet and the Fall Fiver from approximately 1,800 to 2,000 feet.

The bedrock which lies directly under the glacial drift is the Pierre Shale. It consists of a dark-gray silty clay and is a very poor aquifer.

#### QUALITY OF GROUND WATER

Table 1 is a compilation of the chemical analyses of water samples collected in the Harrold area (for map location, see fig. 3). Samples 1 through 5 were collected from alluvium and glacial outwash in the South Fork of Medicine Knoll Creek. This included a sample of the present Harrold city well. All of these samples contain more than the recommended amount of manganese; samples 2 (Harrold city well) and 5 contain more than the recommended amount of iron; and sample 5 also contains more chlorides, sulfates, sodium, and total dissolved solids than recommended. The present city well is one of the best quality samples taken in the South Fork of Medicine Knoll Creek aquifer having the lowest total dissolved solids content (615 ppm).


Sample 6 was obtained from a Fall River Formation well which is 1,985 feet deep. This sample was over the recommended limit of iron and contained over twice the recommended limit of total dissolved solids (2,100 ppm).

Samples 7 and 8 were taken from Dakota Formation wells which were 1,470 and 1,520 feet deep. Both of these wells were over the recommended limits of chlorides, iron, manganese, sodium, and total dissolved solids.

In conjunction with the sampling program, a well interview was conducted in the Harrold area, the results of which are compiled in appendix B.

## CONCLUSIONS AND RECOMMENDATIONS

As was stated earlier the alluvium and outwash in



Harrold area

Figure 1. Map of eastern South Dakota showing the major physiographic divisions and location of the Harrold area.

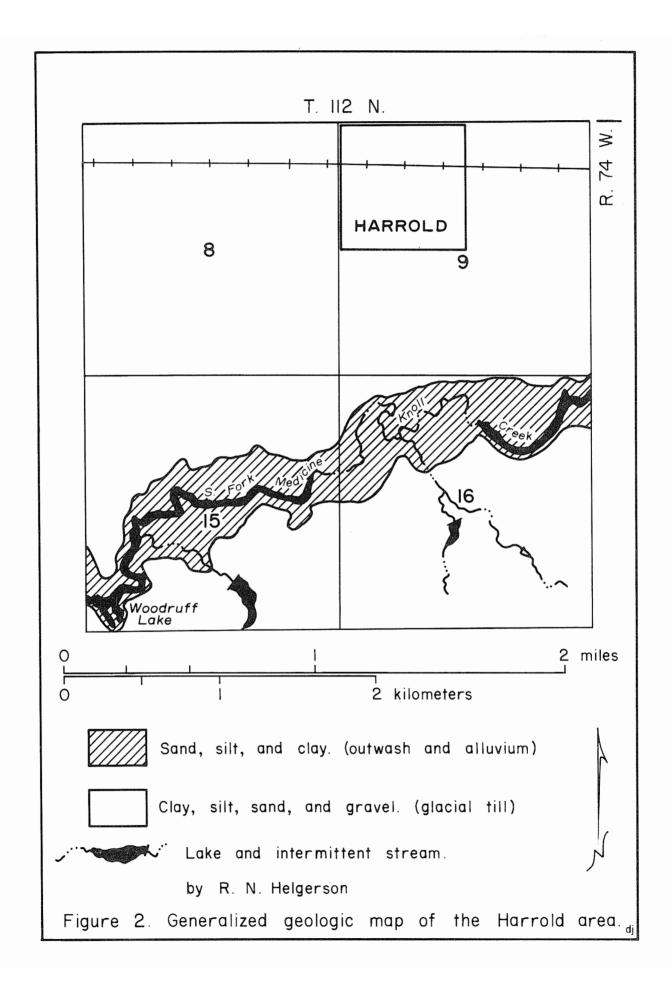



TABLE 1. Chemical analyses of water samples from the Harrold area

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                   | , R. 74 W.                                | 74<br>, R. 74 W.                             | 74<br>, R. 74 W.                       | /4<br>, R. 74 W.                       | 74<br>, R. 75 W.                       | 4<br>R. 75 W.                               | 4<br>R, 74 W.                               | V%<br>R, 74 W.                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | noitsoo.l                   |                   | SE¼SE¼SE¼<br>sec. 11, T. 112 N., R. 74 W. | NE%SE%NE%NW%<br>sec. 16, T. 112 N., R. 74 W. | SW¼NE¼SW¼NE¼<br>sec. 17, T. 112 N., R. | SE¼NE¼SW¼NE¼<br>sec. 17, T. 112 N., R. | SE%SW%NW%NE%<br>sec. 13, T. 112 N., R. | NE¼NE¼NE¼SE¼<br>sec. 1, T. 112 N., R. 75 W. | NE½NE½NE½SE½<br>sec. 8, T. 112 N., R. 74 W. | NW½NW¼NW%SW%<br>sec. 21, T. 112 N., R. 74 W. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total<br>sbilo2             | 1000 <sup>2</sup> | 692                                       | 615                                          | 760                                    | 764                                    | 3650                                   | 2100                                        | 1265                                        | 1760                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrate<br>Nitrogen         | 10.0              | 6                                         | <0.5                                         | <0.5                                   | 9                                      | 2.5                                    | <0.5                                        | <0.5                                        | 2.0                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manganese                   | 0.05              | 1.70                                      | 0.50                                         | 0,40                                   | 0.25                                   | 0.75                                   | <0.05                                       | 0.50                                        | 0.10                                         |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lron                        | 0.3               | <0.05                                     | 2.0                                          | 0:30                                   | < 0.05                                 | 0.50                                   | 1.0                                         | 2.6                                         | 1.0                                          |
| Parts Per Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sulfate                     | 500 <sub>2</sub>  | <20 ?                                     | <20                                          | <20                                    | 250                                    | 1080                                   | 320                                         | 300                                         | 270                                          |
| ٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | səbi vold D                 | 250               | 55                                        | 10                                           | 170                                    | 40                                     | 287                                    | 65                                          | 360                                         | 099                                          |
| , and the second | muisəngaM                   |                   | 40                                        | 20                                           | <10                                    | 30.3                                   | 140                                    | 06                                          | 15                                          | 15                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | muíboS                      | 270 <sup>1</sup>  | 09                                        | 09                                           | 350                                    | 80                                     | 099                                    | 09                                          | 460                                         | 750                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | muiolsO                     |                   | 250                                       | 150                                          | 40                                     | 200                                    | 470                                    | 260                                         | 130                                         | 20                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pepth of<br>Mell in<br>feet |                   | 18                                        | 40                                           | 09                                     | 40                                     | 30                                     | 1985                                        | 1470                                        | 1520                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                      | A                 | -                                         | 2                                            | က                                      | 4                                      | 5                                      | 9                                           | 7                                           | ω                                            |

A - Drinking water standards, U.S. Public Health Service (1962).

<sup>1</sup> Proposed upper limit for sodium.

<sup>2</sup>Modified for South Dakota by the Department of Health (written communication, Water Sanitation Section, September 24, 1968).

All samples were analyzed by the South Dakota Geological Survey Laboratory.

Samples 1-5 were collected from the South Fork Medicine Knoll Creek Aquifer, sample 6 from the Fall River Formation, and samples 7 and 8 from the Dakota Formation.

South Fork of Medicine Creek is approximately 50 feet thick and is the current source of water for the city of Harrold. It is recommended that this outwash be developed further in order to augment the city water supply. Test hole 2 (app. A) indicated the presence of 19 feet of relatively clean, saturated sand from 16 to 35 feet below ground surface. In addition to this, from 35 to 63 feet below ground surface clayey, silty sand is indicated, although this material is not as good as the overlying material, it may prove to be of sufficient quality to merit development. This is in the same depth range as the current city well and water taken from this zone can be expected to have similar chemical characteristics. Interference of a new well developed in the vicinity of test hole 2 is expected to be negligible. A possible problem with further development of this aquifer is that an extended severe drought may cause a depletion of the aguifer to a point at which a sufficient volume of water could not be obtained.

A second alternative to further development of the South Fork of Medicine Knoll Creek aquifer would be the construction of a deep well to either the Dakota or Fall River Formation. This is a secondary recommendation due to the poor chemical quality of the water obtained from these two aquifers and the high cost of this type of well.

A third alternative would be to explore the possibility of developing a well in the South Fork of

Medicine Knoll Creek aquifer further east. The aquifer increases in thickness and areal extent approximately 5 miles east of Harrold. This recommendation is third in that the costs of constructing a delivery system of this length would be quite high.

If the city should decide to test the South Fork Medicine Knoll Creek aquifer for additional water, it is recommended that an engineering firm licensed in South Dakota be hired to coordinate the drilling of a pilot test hole in the vicinity of test hole 2. If the data on the pilot hole shows suitable materials to conduct a pump test, the pilot hole should be converted to a pump test hole. A pump test should be conducted for approximately 24 hours before completion of the well. Water samples should be collected and chemically analyzed. The South Dakota Geological Survey will provide technical assistance and supervise the conducting of the pump test. Recommendations of future well spacing will be based on the results of the pump test.

Before a permanent well is drilled, the city officials should contact the Division of Water Rights, Department of Natural Resource Development, to obtain water rights and a permit to drill a municipal well and the South Dakota Environmental Protection Agency to determine the biological and chemical suitability of the water.

#### APPENDIX A

Logs of test holes in the Harrold area (For map location, see fig. 3)

Test Hole 1 (Auger Hole)

Location: NE¼NE¼SE¼NE¼ sec. 17, T. 112 N., R. 74 W.

Surface Elevation: 1742 feet

| 0-  | 4  | Clay, brown (topsoil)                |
|-----|----|--------------------------------------|
| 4   | 5  | Clay, brown, sandy                   |
| 5-  | 7  | Sand, brown, silty                   |
| 7-  | 10 | Clay, brown, silty                   |
| 10- | 19 | Silt, brown, clayey, saturated       |
| 19- | 24 | Silt, medium-gray, saturated         |
| 24- | 30 | Sand and gravel, coarse, saturated   |
| 30- | 39 | Clay, medium-gray, shaley, saturated |

Test Hole 2 (Auger Hole) Location: NE¼NE¼SE¼NW¼ sec. 16, T. 112 N., R. 74 W.

Surface Elevation: 1761 feet

| 0-  | 7  | Clay, gray-brown, silty with coarse gravel              |
|-----|----|---------------------------------------------------------|
| 7-  | 12 | Gravel, brown, silty                                    |
| 12- | 16 | Clay, brown, pebbly, saturated                          |
| 16- | 35 | Sand, brown, medium-fine, some clay, saturated          |
| 35- | 63 | Sand, dark-brown, medium-fine, silty, clayey, saturated |
| 63- | 78 | Shale, reworked                                         |
| 78- | 80 | Pierre Shale                                            |

Test Hole 3 (Auger Hole)

Location: NE¼NE¼SW¼NW¼ sec. 16, T. 112 N., R. 74 W.

Surface Elevation: 1744 feet

| 0-  | 3  | Clay, dark-brown, silty clay (topsoil)     |
|-----|----|--------------------------------------------|
| 3-  | 12 | Clay, dark-brown, silty                    |
| 12- | 34 | Silt, dark-brown, clayey, saturated        |
| 34- | 40 | Sand, dark-brown, silty, clayey, saturated |
| 40- | 48 | Sand, gray, silty, clayey, saturated       |
| 48- | 55 | Clay, gray, reworked shale                 |
| 55. | 64 | Pierre Shale                               |
|     |    |                                            |

Test Hole 4 (Auger Hole)

Location: NE¼SE¼NW¼NE¼ sec. 16, T. 112 N., R. 74 W.

Surface Elevation: 1953 feet

| 0- | 3 | Clay, dark-brown, silty (topsoil) |
|----|---|-----------------------------------|
| 3  | 9 | Silt, brown, clayey               |

9- 10 Sand, brown

Test Hole 4 -- continued.

| 10- 22 | Silt, brown, clayey                    |
|--------|----------------------------------------|
| 22- 39 | Silt, gray, clayey, saturated          |
| 39- 42 | Sand, medium and silt, gray, saturated |
| 42- 49 | Pierre Shale                           |
|        |                                        |

Test Hole 5 (Auger Hole)

Location: NW1/4NW1/4NE1/4NE1/4 sec. 16, T. 112 N., R. 74 W.

Surface Elevation: 1772 feet

| 0-  | 2  | Silt, brown, clayey (topsoil)  |
|-----|----|--------------------------------|
| 2-  | 5  | Silt, brown                    |
| 5-  | 18 | Silt, brown, with some gravel  |
| 18- | 22 | Sand, brown, silty             |
| 22- | 38 | Silt, brown, clayey, saturated |
| 38- | 62 | Clay, gray, silty, saturated   |
| 62- | 69 | Pierre Shale                   |
|     |    |                                |

Test Hole 6 (Auger Hole)

Location: NE¼SE¼NE¼NE¼ sec. 17, T. 112 N., R. 74 W.

Surface Elevation: 1780 feet

| 0- 3<br>3- 6<br>6- 11<br>11- 27<br>27- 39 | Silt, brown, clayey (topsoil)<br>Clay, brown, silty<br>Clay, light-brown, silty<br>Silt, light-brown, clayey<br>Clay, gray, silty |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 27- 39                                    | Clay, gray, silty                                                                                                                 |
| 27- 39                                    | Clay, gray, slity                                                                                                                 |

Test Hole 7 (Auger Hole)

Location: NW%NW%NW%SW% sec. 16, T. 112 N., R. 74 W.

Surface Elevation: 1803 feet

| 0-  | 3  | Silt, brown, clayey (topsoil) |
|-----|----|-------------------------------|
| 3-  | 17 | Clay, brown, silty            |
| 17- | 34 | Clay, dark-brown, silty       |
| 34- | 39 | Clay, brown, sandy, silty     |

Test Hole 8 (Auger Hole)

Location: NW%NW%NW%SE% sec. 17, T. 112 N., R. 74 W.

Surface Elevation: 1748 feet

| 0-  | 3  | Sand and gravel, brown             |
|-----|----|------------------------------------|
| 3-  | 5  | Sand, brown, medium, saturated     |
| 5-  | 6  | Clay, red-brown, pebbly, saturated |
| 6-  | 33 | Clay, dark-gray, saturated         |
| 33- |    | Pierre Shale                       |

\* \* \*

Test Hole 9 (Auger Hole)

Location: NE¼SE¼NE¼NE¼ sec. 16, T. 112 N., R. 74 W.

Surface Elevation: 1758 feet

|        | 24.                           |        |                                       |
|--------|-------------------------------|--------|---------------------------------------|
| 0⊢ 3   | Silt, brown, clayey (topsoil) | 0- 3   | Silt, brown, sandy (topsoil)          |
| 3. 11  | Clay, dark-brown, silty       | 3. 4   | Sand, brown, silty                    |
| 11- 13 | Clay, brown, silty, sandy     | 4 15   | Clay, brown, sandy, pebbly            |
| 13- 20 | Silt, brown, sandy, saturated | 15- 30 | Sand, brown, medium, silty, saturated |
| 20 28  | Sand, brown, silty, saturated | 30- 35 | Silt, brown, sandy, saturated         |
| 28-    | Pierre Shale                  | 35- 38 | Silt, gray, sandy, saturated          |
|        |                               | 38- 40 | Shale, reworked                       |
|        | * * * *                       | 40- 44 | Pierre Shale                          |

APPENDIX B

Test Hole 10

Surface Elevation: 1761 feet

Location: SE¼SE¼SE¼NE¼ sec. 15, T. 112 N., R. 74 W.

#### Well Records in the Harrold Area

Use: D, domestic; S, stock

Source: SD, glacial sand; GVL, glacial gravel; DF, Dakota Formation; FR, Fall River

Depth to water: F, flowing well

|                   |                                               | Depth<br>of<br>Well | Depth<br>to<br>Water |             |     |        |
|-------------------|-----------------------------------------------|---------------------|----------------------|-------------|-----|--------|
| Name              | Location                                      | (feet)              | (feet)               | Source      | Use | Sample |
| Hoffman, E.       | NW%NW%SW%NW% sec. 4,<br>T. 112 N., R. 74 W    | 1547                | 10                   | DF          | S,D |        |
| Hobert O.         | NE¼NE¼NE¼SE¼ sec. 8,<br>T. 112 N., R. 74 W.   | 1470                | 60                   | DF          | S   | no, 7  |
| Stiefel, R.       | SE¼SE¼SE¼SE¼ sec. 11,<br>T. 112 N., R. 74 W.  | 18                  | 9                    | SD &<br>GVL | S,D | no, 1  |
| Hoffman, O        | NW¼NW¼NW¼SW¼ sec. 15,<br>T. 112 N., R. 74 W.  | 1500                | 50                   | DF          | S,D |        |
| Harrold City Well | NE¼SE¼NE¼NW¼ sec. 16,<br>T. 112 N., R. 74 W.  | 40                  | 18                   | SD &<br>GVL | D . | no. 2  |
| Reding, S.        | SW¼NE¼SW¼NE¼ sec. 17,<br>T. 112 N., R. 74 W.  | 60                  |                      | SD &<br>GVL | S,D | no₅ 3  |
| Reding, S.        | SE%NE%SW%NE% sec. 17,<br>T. 112 N., R. 74 W.  | 40                  |                      | SD &<br>GVL | S   | no. 4  |
| Pfeil, R.         | SE¼SW¼NW¼NE¼ sec. 13,<br>T. 112 N., R., 75 W. | 30                  |                      | SD &<br>GVL | S,D | no. 5  |
| Hobert, J.        | SW%SW%NW%SW% sec. 19,<br>T. 112 N., R. 74 W.  | 1500                | 20                   | DF          | S,D | ****** |
| Hobert, O.        | NW%NW%NW%SW% sec. 21,<br>T. 112 N., R. 74 W.  | 1520                |                      | DF          | S,D | no. 8  |
| Gregg, G.         | NE¼NE¼NE¼SE¼ sec. 1,<br>T. 112 N., R. 75 W.   | 1985                | F                    | FR          | S,D | no. 6  |