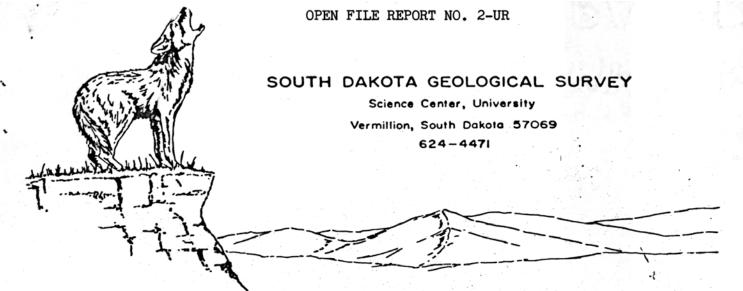
OPEN FILE REPORT NO. 2-UR


by

ASSAD BARARI 1970

GROUND-WATER STUDY

in the

LITTLE WHITE RIVER VALLEY

February 6, 1970

Mr. Howard North, Director Lyman-Jones Water Development Association P. O. Box 1 Murdo, South Dakota

Dear Mr. North:

At the request of the Lyman-Jones Water Development Association the South Dakota Geological Survey conducted a ground-water study in the Little White River Valley from the mouth of the river upstream to the City of White River. Included in this survey were: (1) a review of the geology as mapped by the South Dakota Geological Survey (Agnew, 1957); (2) electrical resistivity investigations at 26 stations conducted by Bruno Petsch; (3) supervised drilling of 20 test holes by Ferguson-Meador and Associates in the area; and (4)

collection and analysis of 11 water samples.

The Little White River has formed a valley approximately 180 feet deep and one-half to a mile wide in the study area. The river has deposited alluvial sediments in the valley which vary from less than a foot to 21 feet thick (Test Hole 5, App. 1). In the study area, these alluvial sediments consist of sand ranging in size from fine to coarse and in some locations clay and sand are mixed together. The thickest alluvial deposit is at the junction of the Little White River Valley and the White River Valley. These deposits are mostly coarse to very coarse sand and approximately 15 feet of these deposits are water saturated. There is locally thicker and coarser material from the junction of the two valleys toward the White River. Twenty-three feet of alluvium ranging in size from medium sand to gravel was penetrated by Test Hole No. 3. The water saturated thickness of the material was 16 feet in this hole. Sediments in this area were deposited by both rivers.

Water in the alluvial deposits in these valleys is hydrologically connected to the respective streams flowing in the valleys. Since water in the White River has more dissolved chemicals than water in the Little White River, water from alluvium in the valley of the White River is poorer in quality. Compare Sample W1 (from alluvium in the White River Valley) with Samples W4, Ws, and W10 (from alluvium in the Little White River Valley). There are some wells in the Little White River Valley which are getting an inferior quality water from the Pierre Shale; compare Samples We, Wr, and We (from the Pierre Shale) with

Samples W4, Ws, and W11 (from alluvium in the Little White River).

It is recommended that the Lyman-Jones Water Development Association do additional testing in the area outlined on the Data Map (fig. 2). This testing should include drilling a few additional test holes in the recommended area on Figure 2. The results of these test holes should provide information on size, sortment, and clay content of the sediments. Based on the data to be gathered from these additional test holes and in consideration of the distance from the White River, the best site for construction of a well for an aquifer test

could then be decided.

A well for an aquifer test should be installed by a qualified driller north of the bridge. Several observation wells should be drilled in the area and an extensive aquifer test should be conducted for a minimum of 72 hours and probably, because of the special connection between the aquifers, for a longer period. The drawdown in the observation wells should be measured during the pump test to calculate the hydraulic properties of the aquifer. Water samples should be collected for chemical analysis during the aquifer test to find out the chemical changes of the quality of water and also to find the effect of the induced recharge for an extensive period. In the event that the quality of water is not satisfactory by the end of the aquifer test, another aquifer test should be run in the southeast of the recommended area.

The results of the aquifer test(s) will afford a basis for deciding if the area will provide the required quantity and quality of water, determine the proper spacing of production

wells, and obtain data for design of the wells.

Before a permanent well is drilled the Lyman-Jones Water Development Association should consult with the South Dakota Water Resources Commission to obtain water rights and a permit to drill a municipal well, and with the South Dakota Department of Health to determine biological and chemical suitability of the water.

For your information a generalized geologic map, data map, the results of chemical analyses of water, the logs of the test holes, a map showing resistivity stations, and

resistivity readings are enclosed.

Sincerely,

Assad Barari Research Geologist

For the State Geologist

AB:mk Encls:

Fig. 1. Geologic Map of the Little White River Study Area

Fig. 2. Data Map of the Little White River Study Area

Fig. 3. Map Showing Location of Resistivity Stations

Table 1. Chemical Analyses of Water from the Little White River Study Area

Table 2. Resistivity Readings

Appendix 1. Logs of Test Holes in the Little White River Area

Table 1.-CHEMICAL ANALYSES OF WATER FROM THE LITTLE WHITE RIVER STUDY AREA

2						Par	ts Per	Million					
Sample	Source	Calcium	Sodium	Magne- sium	Chloride	Sulfate	Iron	Mangan- ese	Nitrogen	Fluoride	ьH	Hardness CaCOs	Total Solids
A	-	_	_	50	250	5001	0.3	0.0051	10.0	0.9- 1.7 ²	-		1000¹
W1	WA	80	215	18	16	404	0.4	1.2	1.0	0.4		274	900
W ₂	TA	72	35	19	1	132	2	4.4		4.0		259	418
Ws ·	R	29	22	14	0.4	56	2.6	0	0.4	0.6		128	268
W4	TA	58	41	17	8	50	3.2	1.8	1.2	0.6	1	217	416
Ws	TA	59	80	21	5	126	2.2	1.2	0.4	0.8		233	524
W6	WP	321	156	26	321	736		0.2	40.0	0.6		910	1800
W7	WP	103	200	22	ີ 28	460			0.7	0.4		346	1014
Ws	WP	582	440	65	32	2358			3.5	1.2		1718	3948
W9	R	18	19	20	0.4	32			0.6	0.4		206	270
W10	WA	36	16	13	0	24	1	1.8	1	0.6		142	256
W11	WA	27	23	14	0	36	0.3			0.6		123	226

Modified for South Dakota by the Department of Health (written communication, Water Sanitation Section, March 20, 1968).

²1.2 is optimum for South Dakota.

Source: WA, existing well in alluvium; TA, test hole in alluvium; R, Little White River; WP, existing well in Pierre Shale.

Samples were analyzed by the South Dakota Chemical Laboratory.

LOCATION OF WATER SAMPLES (for map location, see Figure 2)

- A. Drinking water standards, U. S. Public Health Service (1962).
- W1. SW4SW4NW4 sec. 8, T. 4 S., R. 29 E., Road Side Park well.
- W2. NW1/NW1/NW1/NE1/4 sec. 9, T. 43 N., R. 28 W., Test Hole No. 2, water was collected from depth of 14 feet.

Location of water samples - continued.

- W3. SE¼NE¼ sec. 9, T. 43 N., R. 28 W., water from Little White River.
- W4. SE'/NW//SW//NE'/4 sec. 15, T. 43 N., R. 28 W., Test Hole No. 9.
- Ws. SE'4SW'4SW'4NE'4 sec. 15, T. 43 N., R. 28 W., Test Hole No. 10.
- W6. SE'4SW'4NW'4 sec. 5, T. 42 N., R. 28 W., Larry Hutchinson well.
- W7. SE'/ANE'/SW'/ANW'/4 sec. 24, T. 42 N., R. 29 W., Knife well, 47 feet deep.
- Ws. SW4SW4NE4SW4 sec. 23, T. 42 N., R. 29 W., Joseph Larvie well, 48 feet deep.
- We. SW4SW4SW4NW4 sec. 23, T. 42 N., R. 29 W., Little White River water.
- W10. NE¼NE½NE½SW½ sec. 34, T. 42 N., R. 29 W., White River City Well No. 2.
- W11. SEYNEYSEYSWY sec. 34, T. 42 N., R. 29 W., White River City Well No. 1.

Table 2.-RESISTIVITY READINGS¹ (for map location, see Figure 3)

20 24 28 32 36 40	Electrode Spacing in Fee	Electrode Spacing in Feet	de Spacing in Feet	ng in Feet 36 40	4 et		4	84	23	25	69	49	89	5	1
				3	3	2		P	30	8	3	5	8	2	2
300	+	355	201	118	130										
8 8	1	275	246	254	234	220	217	183	170	142	130	184	167	154	134
358		304	277	115	197	175	164	152	130	124	110				
405		369	344	294	273	246	228	200	193	179	180				
944		815	865	632	479	364	297	272	218	28	169				Γ
533		451	397	331	297	261	235	201	178	163	151				
35300		28300	21100	160	110	197	0	339	0	302	229				I -
298	-	301	0	255	235	203	185	172	146	134	123				
319		237	188	161	135	0	112	108	109	98	084				
251		259	282	287	295	309	311	308	303	294	273	192	273	231	
472		510	520	496	479	447	424	392	382	351	330	305	293	264	Γ
1010		781	612	534	410	327	276	403	416	337	347	316	291	239	
1340		1010	839	670	526	446	374	309	260	219	186	172	145	141	
153		167	169	189	187	294	250	200	243	189	186	179	158	150	-
203		172	151	134	119	2	960	094	980	980	220	074	620	770	
137	- 1	151	171	084	130	137	114	001	860	111	220	890	150	890	
151	- 1	308	362	323	274	257	214	211	201	187	156	150	138	232	
457	900	383	328	273	227	500	193	167	159	142	134	126	114	105	
366		299	244	202	167	155	148	133	123	113	106	108	103	160	1
172	12.	124	118	129	139	129	125	118	117	103	18	ᅙ	660	060	
312	4 1 1	255	237	204	195	175	164	162	145	126	127	125	128	108	
437	100	435	376	309	303	212	189	176	165	157	137	119	114	120	Γ
127	ĺ	114	105	106	101	094	260	680	680	084	084	084	980	180	
303	5.5	238	204	171	155	123	114	126	192	102	860	260	260	880	Г
15500		12200	050	111	107	0,00	-	-		1		-	-		Γ

¹ All readings are in Ohm-centimeters, Wenner arrangement of electrode spacing.

² Electrode spacing for Stations 1 and 2 is 5, 10, 15, 20 etc. feet (adjustment of instrument and training of erew).

APPENDIX 1

LOGS OF TEST HOLES IN THE LITTLE WHITE RIVER AREA (for location, see Figure 2)

Test Hole No. 1

Location: SE4SE4SW4SE4 sec. 4, T. 43 N., R. 28 W.

Surface elevation: 1785¹ feet Depth to water: 10 feet

0-1 Topsoil

1-12 Clay, yellowish-brown

12-20 Clay and gravel

20-25 Gravel

25-28 Shale, dark-gray

Test Hole No. 2

Location: NW4NW4NW4NE4 sec. 9, T. 43 N., R. 28 W.

Surface elevation: 1782 feet Depth to water: 6 feet

0-1 Topsoil

1- 4 Sand, light-brown, medium 4-20 Sand, coarse to very coarse

20-25 Sand and gravel

26-28 Clay

Test Hole No. 3

Location: SW4SE4NW4NE4 sec. 9, T. 43 N., R. 28 W.

Surface elevation: 1782 feet

Water table: 7 feet

0-1 Topsoil

1- 7 Sand, medium

7-14 Sand, medium to coarse

14-23 Sand and gravel

23-24 Shale, gray

Test Hole No. 4

Location: NE¼NE¼SE¼NW¼ sec. 9, T. 43 N., R. 28 W.

Surface elevation: 1783 feet

Water table: 7 feet

0- 4 Clay

4-8 Sand, gray, medium-fine

8-18 Sand, medium

18-21 Sand, coarse, some pebbles

21-25 Shale, gray

¹ Elevations for the test holes are taken from U. S. Geological Survey 7½ minute, 10 feet contour interval map and should not be considered as an exact elevation of the test hole location.

Test Hole No. 5

Location: SE'/NE'/SW'/NE'/sec. 9, T. 43 N., R. 28 W.

Surface elevation: 1791 feet Depth to water: 6 feet

> Sand, light-brown, grading to gray, coarse, well-sorted 0-8 8-18 Sand, coarse

18-21 Sand, coarse to very coarse, some clay

21-26 Clay, gray

Test Hole No. 6

Location: SE4SE4SE4NE4 sec. 9, T. 43 N., R. 28 W.

Surface elevation: 1799 feet Depth to water: 6 feet

> 0-1 Topsoil 1- 5 Sand, medium

5-18 Sand, gray, medium, little clay

18-23 Shale

Test Hole No. 7

Location: NW¼NE¼NW¼NW¼ sec. 15, T. 43 N., R. 28 W.

Surface elevation: 1794 feet Depth to water: 4 feet

> 0- 2 Topsoil

2- 4 Sand, fine, silty

4- 9 Sand, brown, medium to coarse

9-27 Clay, dark-gray (shale)

Test Hole No. 8

Location: SW¼NE¼NE¼NW¼ sec. 15, T. 43 N., R. 28 W.

Surface elevation: 1794 feet Depth to water: 4 feet

> 0-2 Topsoil

2- 4 Sand, brown, fine to medium

4-12 Sand, brown changing to gray, medium

12-18 Clay, dark-gray (shale)

Test Hole No. 9

Location: SE¼NW¼SW¼NE¼ sec. 15, T. 43 N., R. 28 W.

Surface elevation: 1795 feet Depth to water: 4 feet

> 0- 2 2- 7 Topsoil

Sand, fine, some clay

Test I lole No. 9 - continued.

7-15 Sand, gray, medium to coarse

15-23 Clay, gray

Test Hole No. 10

Location: SE4SW4SW4NE4 sec. 15, T. 43 N., R. 28 W.

Surface elevation: 1798 feet Depth to water: 6 feet

0-1 Topsoil

1- 7 Sand, some clay

7-15 Sand, medium to coarse, well sorted

15-17 Clay, gray

Test Hole No. 11

Location: SE¼NE¼NW¼SE¼ sec. 15, T. 43 N., R. 28 W.

Surface elevation: 1802 feet Depth to water: 6 feet

0-1 Topsoil

1- 5 Sand, brown, medium to coarse

5-17 Sand, gray, some pebbles

17-18 Shale

Test Hole No. 12

Location: SW4NW4SE4SE4 sec. 15, T. 43 N., R. 28 W.

Surface elevation: 1805 feet Depth to water: 7 feet

0-1 Topsoil

1- 4 Sand, brown, fine 4- 8 Sand, medium

8-17½ Sand, medium, little clay 17½-23 Clay, dark-gray (shale)

Test Hole No. 13

Location: SE'4SE'4NV'4NE'4 sec. 22, T. 43 N., R. 28 W.

Surface elevation: 1813 feet Depth to water: 8 feet

0-1 Topsoil

1- 7 Sand, brown, fine 7- 8 Sand, medium

8-191/2 Clay, gray, soft drilling

19½-21 Shale

Test Hole No. 14

Location: NE1/4SE1/4NW1/4NE1/4 sec. 22, T. 43 N., R. 28 W.

Surface elevation: 1814 feet Depth to water: 7 feet

> 0-1 Topsoil

1-4

Sand, brown, fine Sand, medium, some clay 4-6 6-12 Sand, medium to coarse

12-15 Sand, some clay 15-18 Clay, gray, (shale)

Test Hole No. 15

Location: SWMNEMNWMNWM sec. 27, T. 43 N., R. 28 W.

Surface elevation: 1822 feet Depth to water: 5 feet

Topsoil

1- 4 Sand, fine, some clay 4-13 Sand, medium to coarse

13-16 Clay, dark-gray

Test Hole No. 16

Location: SW1/4NW1/4SE1/4NE1/4 sec. 28, T. 43 N., R. 28 W.

Surface elevation: 1823 feet Depth to water: 8 feet

0- 1	Topsoil
1- 5	Sand, fine
5- 8	Sand, medium
8-12	Sand, coarse
12-13	Clay, gray
13-19	Sand and gravel
19-21	Shale

Test Hole No. 17

Location: SW4SE4SW4NW4 sec. 5, T. 42 N., R. 28 W.

Surface elevation: 1862 feet Depth to water: 3 feet

Sand, brown, medium

2- 5 Sand, coarse

5- 9 Sand, gray, some pebbles

9-12 Shale

Test Hole No. 18

Location: NE4SW4NE4SW4 sec. 5, T. 42 N., R. 28 W.

Surface elevation: 1875 feet Depth to water: dry hole

Test Hole No. 18 - continued.

Topsoil Clay, brown Shale, gray 1- 4 4- 8

Test Hole No. 19 Location: SE¼NE¼SW¼NW¼ sec. 24, T. 42 N., R. 29 W. Surface elevation: not measured Depth to water: 7 feet

0- 9 9-11 Sand, tan, medium coarse Shale, gray

Test Hole No. 20

Location: NE¼NE¼NE¼SW¼ sec. 34, T. 42 N., R. 29 W. Surface elevation: not measured Depth to water: 9 feet

Clay and sand, (built up area) Sand, coarse

~ 0- 5 5-20 Shale, gray 20-23