Geology of the
Hill City Quadrangle
Pennington County
South Dakota—
A Preliminary Report

By JAMES C. RATTÉ and RUSSELL G. WAYLAND

CONTRIBUTIONS TO GENERAL GEOLOGY

GEOLOGICAL SURVEY BULLETIN 1271-B

General geology of a deformed area that is
underlain by Precambrian phyllites and
schists and is intruded by granite and
pegmatites in the central Black Hills of
South Dakota
UNITED STATES DEPARTMENT OF THE INTERIOR
WALTER J. HICKEL, Secretary

GEOLOGICAL SURVEY
William T. Pecora, Director

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402
CONTENTS

Abstract
Introduction
Geologic setting
Stratigraphy
 Oreville Formation
 Bugtown Formation
 Harney Peak Granite
 Quaternary deposits
Structure
 Folds
 Faults
 Minor structures
Metamorphism
Mineral deposits
References cited

ILLUSTRATIONS

PLATE 1. Geologic map and sections of the Hill City quadrangle. In pocket
FIGURE 1. Structural diagrams in area of northeast-trending cross folds

TABLES

TABLE 1. Chemical analyses of metasedimentary rocks of the Oreville Formation
TABLE 2. Chemical analyses of metasedimentary rocks of the Bugtown Formation
CONTRIBUTIONS TO GENERAL GEOLOGY

GEOLOGY OF THE HILL CITY QUADRANGLE
PENNINGTON COUNTY, SOUTH DAKOTA—
A PRELIMINARY REPORT

By JAMES C. RATTÉ and RUSSELL G. WAYLAND

ABSTRACT

The Hill City quadrangle, in the central Black Hills, South Dakota, is underlain by Precambrian phyllites and schist, which are intruded by granite and attendant zoned and unzoned pegmatites on the northwest flank of the Harney Peak dome. Adjacent to the dome, the schists are metamorphosed to sillimanite grade. The rocks are deformed by faulting and by two major and one minor set of folds, Gold, spodumene, tin, mica, beryl, feldspar, and tungsten have been mined in the quadrangle.

INTRODUCTION

The geologic map of the Hill City quadrangle (pl. 1) is part of a study by the U.S. Geological Survey of the pegmatites of the central Black Hills and their geologic setting. Early phases of this work concerned detailed pegmatite investigations, most of which have already been reported. Present work consists primarily of detailed regional mapping of quadrangles in the pegmatite area. The geologic map of the Fourmile quadrangle, west of Custer, was the first completed, and it was published as part of a comprehensive study of the geology and pegmatites of that area (Redden, 1963). A similar study of the Berne quadrangle was made by Redden (1968).

Previous geologic studies in the Hill City area include reconnaissance mapping by Darton and Paige (1925), a thesis on the Hill City area (Janosky, 1949), and numerous descriptions of mines and prospects. The structure and origin of the Harney Peak dome and of other Precambrian granite domes in the Black Hills were described by Runner (1943) and by Balk (1931).

GEOLOGIC SETTING

The Hill City quadrangle is in the central part of the Precambrian core of the Black Hills uplift. The Precambrian rocks within the quad-
range are chiefly pelitic phyllites and schists, and metagraywackes, which are intruded by part of a small batholithic mass of pegmatitic granite, the Harney Peak Granite. The Hill City quadrangle is on the northwest flank of the Harney Peak dome, which was formed by the intrusion of this batholith, and contains about 2 square miles of Harney Peak Granite in its southeast corner. Additional sheets of pegmatitic granite, including some zoned pegmatites, form satellitic intrusive bodies throughout the south half of the quadrangle, but become less abundant away from the main granite body. The age of the Harney Peak Granite, as indicated by isotopic ages of its associated pegmatites, is about 1,600 m.y. (million years) (Davis and others, 1955, p. 146–147; Kulp and others, 1956).

STRATIGRAPHY

The metasedimentary rocks in the Hill City quadrangle are divided into two formations: the Oreville Formation, defined herein, and the Bugtown Formation, defined by Redden (1963).

OREVILLE FORMATION

The Oreville Formation is named for the Oreville rail siding in the Custer quadrangle 0.6 mile south of the Hill City quadrangle on U.S. Highway 16. The type locality is along the north bank of Spring Creek west of Oreville, where the two fine-grained pelitic facies of the formation are well represented. They are:

1. Biotite facies: laminated quartz-biotite-garnet schist containing characteristic iron-stained garnet-rich beds generally a few tenths of an inch thick; locally grades into somewhat graphitic rocks.
2. Muscovite facies: streaked quartz-muscovite-biotite-garnet schist having variable bedding characteristics which range from thinlaminated (pinstripe) to rather thick massive beds and rocks without distinct bedding. Abundant tiny magnetite octahedra and pyrite metamacrysts or their hematite pseudomorphs are locally common in this facies.

Rocks of the two pelitic facies are commonly interlayered and have been mapped insofar as practicable according to the dominant facies present.

The Oreville Formation in the Hill City quadrangle also contains a psammite facies consisting mainly of massive to foliated metagraywacke and quartz schist, which grades into micaceous quartz schist and is interlayered in many places with the two pelitic facies. This third facies is best developed in the Zimmer Ridge Member of the formation, a metagraywacke unit that is named here for a belt of outcrops nearly
General geology

foliated schists, and metagraywackes, is interpreted as a batholithic mass of pegmatitic granite. The Hill City quadrangle is on the south flank of a dome, which was formed by an upwarp of the crystalline basement and contains about 3 square miles of these schists. Additional sheets of fine-grained pegmatitic schists form satellite members of the quadrangle, but are not well correlated with the main body. The age of the schists is estimated at 1.5 billion years (Davis and others, 1963).

GEOLOGY

The Hill City quadrangle is divided into two formations, defined herein, and the lower member consists of micaous schist, whereas the bottom of the Bugtown Formation is characterized by the presence of metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

FORMATION

The Oreville Formation consists of micaous schist, whereas the bottom of the Bugtown Formation has massive metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

For the Oreville Formation, the lower contact is not exposed in the Hill City quadrangle, and the upper contact is characterized by the presence of metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

The Oreville Formation consists of micaous schist, whereas the bottom of the Bugtown Formation has massive metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

Two main varieties of amphibole rock, in beds generally less than a foot thick, are sparsely distributed in the more micaous facies of the Oreville. One variety is massive to foliated and is characterized by the presence of metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

The Oreville Formation consists of micaous schist, whereas the bottom of the Bugtown Formation has massive metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

Two main varieties of amphibole rock, in beds generally less than a foot thick, are sparsely distributed in the more micaous facies of the Oreville. One variety is massive to foliated and is characterized by the presence of metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

The Oreville Formation consists of micaous schist, whereas the bottom of the Bugtown Formation has massive metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.

Two main varieties of amphibole rock, in beds generally less than a foot thick, are sparsely distributed in the more micaous facies of the Oreville. One variety is massive to foliated and is characterized by the presence of metagreywacke beds. Sedimentary structures, including graded bedding and load casts, are seen in the Bugtown metagreywacke near the north edge of the quadrangle. The stratigraphic position of the formation is inferred from the presence of the overlying deposits in the Hill City area.
but plagioclase has not been detected. The constituents of the amphiboles probably were derived from carbonate minerals in the original sediments, but the quartz probably recrystallized from chert or from clastic material.

The composition of rocks included in the Oreville Formation is shown by eight chemical analyses in table 1; the sample localities are designated on plate 1. Rocks belonging to the dominant biotite facies

<table>
<thead>
<tr>
<th>Table 1.—Chemical analyses, in percent, of metasedimentary rocks of the Oreville Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Analyzes 1, 2, 3, 5, 6, 8 by Ellen Daniels; analyses 4, 7 by George Riddle. Carbon determined pyrolytically by Irving Frost; not determined. Sample types: analyses 1, 2, 3, 7, and 8 are 30- to 40-in. composite samples; analyses 2 is a 20-inch-long channel sample across 60-85 thin beds, approximately 1 lb; analysis 3 is a selected sample, approximately 3 lb.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facies No.</th>
<th>Biotite</th>
<th>Muscovite</th>
<th>Pasmite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field No.</td>
<td>HC-63A</td>
<td>HC-63-6A</td>
<td>HC-63-7A</td>
</tr>
<tr>
<td></td>
<td>H-66-8A</td>
<td>H-63-4A</td>
<td>H-63-6A</td>
</tr>
<tr>
<td></td>
<td>H-64-70A</td>
<td>HC-63-1A</td>
<td></td>
</tr>
<tr>
<td>Map location</td>
<td>D-6</td>
<td>D-6</td>
<td>B-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>57.93</td>
<td>58.22</td>
<td>59.35</td>
<td>62.09</td>
<td>59.98</td>
<td>60.12</td>
<td>62.33</td>
<td>72.67</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.77</td>
<td>15.13</td>
<td>10.30</td>
<td>17.42</td>
<td>17.99</td>
<td>16.38</td>
<td>18.60</td>
<td>12.79</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.84</td>
<td>3.91</td>
<td>8.58</td>
<td>4.02</td>
<td>1.06</td>
<td>1.44</td>
<td>.90</td>
<td>.49</td>
</tr>
<tr>
<td>FeO</td>
<td>8.28</td>
<td>7.90</td>
<td>8.87</td>
<td>3.17</td>
<td>7.11</td>
<td>7.60</td>
<td>5.40</td>
<td>3.62</td>
</tr>
<tr>
<td>MgO</td>
<td>2.86</td>
<td>2.92</td>
<td>1.62</td>
<td>2.18</td>
<td>2.78</td>
<td>2.99</td>
<td>2.53</td>
<td>1.54</td>
</tr>
<tr>
<td>CaO</td>
<td>1.32</td>
<td>1.23</td>
<td>1.34</td>
<td>3.91</td>
<td>1.07</td>
<td>1.31</td>
<td>.70</td>
<td>.48</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.61</td>
<td>1.52</td>
<td>.05</td>
<td>1.93</td>
<td>2.45</td>
<td>2.08</td>
<td>1.49</td>
<td>2.49</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.17</td>
<td>3.44</td>
<td>1.47</td>
<td>4.30</td>
<td>3.87</td>
<td>3.79</td>
<td>4.60</td>
<td>3.88</td>
</tr>
<tr>
<td>H₂O</td>
<td>2.20</td>
<td>2.00</td>
<td>2.00</td>
<td>2.36</td>
<td>2.36</td>
<td>1.82</td>
<td>2.23</td>
<td>.63</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.44</td>
<td>.36</td>
<td>.39</td>
<td>.55</td>
<td>.05</td>
<td>.12</td>
<td>.09</td>
<td>.04</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>56.00</td>
<td>.57</td>
<td>.84</td>
<td>.69</td>
<td>.68</td>
<td>.62</td>
<td>.67</td>
<td>.48</td>
</tr>
<tr>
<td>MnO</td>
<td>17.14</td>
<td>.06</td>
<td>.06</td>
<td>.11</td>
<td>.12</td>
<td>.13</td>
<td>.12</td>
<td>.13</td>
</tr>
<tr>
<td>CO₂</td>
<td>1.29</td>
<td>1.18</td>
<td>.00</td>
<td>.43</td>
<td>.49</td>
<td>.60</td>
<td>1.14</td>
<td>.06</td>
</tr>
<tr>
<td>SO₂</td>
<td>.01</td>
<td>.01</td>
<td>.00</td>
<td>.01</td>
<td>.00</td>
<td>.01</td>
<td>.02</td>
<td>.03</td>
</tr>
<tr>
<td>Cl</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.00</td>
<td>.00</td>
<td>.03</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>S</td>
<td>.02</td>
<td>.02</td>
<td>.03</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>.39</td>
<td>.38</td>
<td>1.95</td>
<td>.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal | 99.93 | 100.13 | 100.07 | 99.64 | 99.72 | 100.08 | 99.78 | 99.79 |
Less O | .06 | .06 | .06 | .06 | .05 | .07 | .05 | .03 |
Total | 99.87 | 100.07 | 100.01 | 99.58 | 99.67 | 100.01 | 99.73 | 99.76 |

1. Thin-bedded quartz-biotite-garnet schist without appreciable muscovite facies at this locality.
2. 1- to 3-inch iron-stained garnet-rich bed in thin-bedded quartz-biotite-garnet schist.
3. Light-colored quartz-mica-garnet phyllite with some thin garnet beds.
4. Grossen quartz-mica phyllite containing tiny pink garnets and magnetite oocytes. Garnet beds lacking or smaller and less abundant than in the biotite facies. Muscovite comparable in abundance to biotite.
5. Quartz-mica-garnet phyllite, lacking conspicuous garnet-rich beds.
6. Upright quartz-biotite-chlorite-garnet phyllite with some thin garnet beds.
7. Light-colored quartz-mica-garnet-chlorite schist.
8. Metagraywacke, Zimmer Ridge Member.
The constituents of the carbonate minerals in the original crystallized from chert or from in the Oreville Formation is Table 1; the sample localities are to the dominant biotite facies of metasedimentary rocks of the geologic

George Riddle. Carbon determined pyrolytically at the University of California at Berkeley. Analyses 1, 4, 5, 6, 7, and 8 are 60-80 thin beds, approximately 1 lb; analysis

<table>
<thead>
<tr>
<th>Muscovite</th>
<th>Psmite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C-5</td>
</tr>
<tr>
<td>59.98</td>
<td>60.12</td>
</tr>
<tr>
<td>17.99</td>
<td>16.38</td>
</tr>
<tr>
<td>12.06</td>
<td>13.44</td>
</tr>
<tr>
<td>17.11</td>
<td>7.60</td>
</tr>
<tr>
<td>2.78</td>
<td>2.99</td>
</tr>
<tr>
<td>2.63</td>
<td>2.45</td>
</tr>
<tr>
<td>3.87</td>
<td>3.79</td>
</tr>
<tr>
<td>1.54</td>
<td>1.82</td>
</tr>
<tr>
<td>0.51</td>
<td>0.12</td>
</tr>
<tr>
<td>0.68</td>
<td>0.62</td>
</tr>
<tr>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>0.60</td>
<td>1.14</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>99.72</td>
<td>100.08</td>
</tr>
<tr>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>99.67</td>
<td>100.01</td>
</tr>
</tbody>
</table>

Muscovite, Mapped with muscovite quartz-biotite-garnet schists, garnets and magnetite cataducts. Garnet beds rich facies. Muscovite comparable in abundance rich beds; thin garnet beds.

are represented by analyses 1 to 6. Light-colored quartz-muscovite-biotite-garnet schist of the muscovite facies of the Oreville is represented by analysis 7 and metagraywacke of the Zimmer Ridge Member, by analysis 8. Except for the metagraywacke and the garnet-rich bed, these rocks have compositions in the range of shales, although they are commonly somewhat richer in total iron and manganese oxides than the average shale cited by Pettijohn (1949). The garnet-rich bed has a total iron oxide content exceeding 17 percent, accompanied by abundant manganese oxide and carbon but only sparse alumina, soda, and potash; its composition suggests that it was originally an impure iron carbonate sediment.

BUGTOWN FORMATION

The Bugtown Formation (Redden, 1963) in the Hill City quadrangle is probably 5,000 to 10,000 feet thick. It consists mainly of massive thick-bedded metagraywacke (analysis 9, table 2) interlayered with quartz-mica schist and phyllite. Quartz-mica schist from the staurolite and sillimanite zones is represented by analyses 11 and 12, table 2. Minor rock types shown locally on plate 1 include graphitic schist and phyllite, amphibole and calc-silicate rocks, conglomerate, and gneiss. The graphitic unit at the north border of the quadrangle, shown between D-1 and E-2 on the geologic map, contains much graphitic and highly iron-stained rock and some calc-silicate and amphibole-rich beds, as well as thin-bedded quartz-biotite-garnet phyllite that is not unlike the typical Oreville rocks with which the unit is locally in contact across the Empire fault. The southeast end of this unit is probably the site of a facies change, the exact nature of which is not clear from the few exposures available. Two thinner units of graphitic schist have been mapped from the east side of the Hill City fault (F-4 on pl. 1) to the vicinity of the Golden Summit mine (F-7 on pl. 1). These units are particularly distinctive where the dark sooty graphitic schist contains myriad tiny tourmaline needles. Southwestward from the Golden Summit mine, at a stratigraphic position similar to that of the graphitic schist, there is a thin discontinuous unit or units consisting of coarse amphibole rock a few inches to about 1 foot thick, graphitic schist, streaked quartzite, and calc-silicate rock, which total a few tens of feet in maximum thickness. Thin calc-silicate beds and breccia layers like those in the Oreville Formation are interlayered with the more massive rocks of the Bugtown Formation.

Metagraywacke, quartz-mica phyllite (analysis 10, table 2), and quartz-mica schist in the northeast corner of the quadrangle seem to be in normal sequence above the Oreville rocks of the Gordon Gulch area.
Table 2—Chemical analyses, in percent, of metasedimentary rocks of the Bugtown Formation

[Analysis 9 by Ellen Daniels; analyses 10-12 by George Riddle. Sample type: 20- to 40-lb composite]

<table>
<thead>
<tr>
<th>Analysis No.</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field No.</td>
<td>HC-63-2A</td>
<td>H-64-270A</td>
<td>H-64-353A</td>
<td>H-64-398A</td>
</tr>
<tr>
<td>Map location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-5</td>
<td>G-1</td>
<td>G-7</td>
<td>E-10</td>
</tr>
<tr>
<td>SiO₂</td>
<td>72.69</td>
<td>69.90</td>
<td>61.05</td>
<td>59.85</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.37</td>
<td>14.41</td>
<td>19.60</td>
<td>19.79</td>
</tr>
<tr>
<td>FeOox</td>
<td>3.72</td>
<td>1.16</td>
<td>1.09</td>
<td>0.86</td>
</tr>
<tr>
<td>Fe₂O₄</td>
<td>3.08</td>
<td>3.64</td>
<td>5.60</td>
<td>6.16</td>
</tr>
<tr>
<td>MgO</td>
<td>1.35</td>
<td>1.74</td>
<td>2.46</td>
<td>2.55</td>
</tr>
<tr>
<td>CaO</td>
<td>54</td>
<td>44</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.08</td>
<td>1.16</td>
<td>0.98</td>
<td>0.74</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.90</td>
<td>3.85</td>
<td>5.13</td>
<td>5.16</td>
</tr>
<tr>
<td>H₂O +</td>
<td>1.17</td>
<td>1.95</td>
<td>2.46</td>
<td>2.87</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.03</td>
<td>0.07</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.49</td>
<td>0.70</td>
<td>0.73</td>
<td>0.69</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.14</td>
<td>0.19</td>
<td>0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
<td>0.08</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Cl1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>F1</td>
<td>0.05</td>
<td>0.11</td>
<td>0.13</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Subtotal	99.70	99.52	99.92	99.59
Less O	.03	.05	.05	.06
Total	99.67	99.47	99.87	99.53

3. Metagraywacke.
4. Stylized quartz-mica phyllite.
5. Quartz-mica-staurolite-andalusite-garnet schist.

However, it is not certain whether the rocks of Oreilly lithology in this area correlate with the Oreilly in the rest of the quadrangle. The quartz-mica schist in this area contains beds of dark-gray to black glassy quartzite, which are not present in the Bugtown schists elsewhere in the Hill City quadrangle, but are common along strike to the southeast in the Mount Rushmore quadrangle (J. J. Norton, oral commun., 1966).

Harney Peak Granite

The main body of Harney Peak Granite in the Hill City quadrangle ranges from medium- and coarse-grained granite to pegmatite. Beyond the borders of the main mass, the rock is almost entirely pegmatite in sheets and dikes that include zoned pegmatites, as well as layered and homogeneous pegmatite (Redden, 1963, p. 253). Within the batholithic are numerous remnants or screens of schist in which the structure parallels that of the country rock outside the batholith. Countless exposures show that the granite was intruded along the
foliation of the metamorphic rocks and followed joints for further access across the grain of the country rock. Most of the schist screens are too small to be shown on scale on plate 1, but they probably aggregate at least 10 percent of the area mapped as granite. The main granite mass shows conspicuous textural and mineralogical layering, whose origin during the crystallization of the granite was discussed by Redden (1963, p. 229-235). The domal form of the layers throughout the batholith was described by Balk (1931).

The Harney Peak Granite is a light-gray to pink albite-muscovite-perthite microcline granite containing notable amounts of accessory tourmaline and garnet. Chemical analyses and modes of the granite in the Harney Peak area southeast of the Hill City quadrangle were presented by Oreille (1960, p. 1485).

QUATERNARY DEPOSITS

Terrace gravels, probably of Pleistocene age, are differentiated on the geologic map from Holocene gravels and alluvium in the valley bottoms. The older terrace gravels contain a few large boulders and much material of cobble size, consisting especially of pegmatite, quartz, calc-silicate rock, quartzite, and amphibolite; the latter probably originated in upper Spring Creek, several miles west of the quadrangle. The highest observed terrace remnant is in the NE1/4 sec. 12 (B-8.5 on pl. 1) about 200 feet above the adjacent stream valley. Most observed terrace remnants are along Spring Creek, but a few are along Palmer Creek.

STRUCTURE

The geologic structure in the Hill City quadrangle is the result of Precambrian folding, faulting, and igneous intrusion, modified by faulting, or at least renewed movement along old faults, during the Tertiary uplift of the Black Hills.

FOLDS

Despite the many complexities shown on the geologic map and sections, the structure in the Hill City area is dominated by two sets of tight folds. The older folds are most prominent in the north and northwest parts of the area and the younger, in the south and southeast parts. The main folds of the older system are the Lowden Mountain syncline and the Union Hill anticline, which have the north-northwest trend characteristic of most of the Precambrian rocks of the Black Hills. Near Hill City, the Union Hill anticline is disrupted by a series of very tight cross folds that cause the northwesterly grain exhibited on this part of the map. Further south, the northeast-trending folds become the dominant structures.
A preliminary analysis of minor structures indicates that the older northwest-trending folds are overturned folds having axes that plunge gently to moderately (15°-50°) southward. Geologic sections A-A', B-B' and C-C' (pl. 1) show the Lowden Mountain syncline as a tight overturned fold with a steep westward-dipping axial plane; the Union Hill anticline probably has about the same form in the northwest part of the quadrangle, where it does not show the effects of later deformation. Minor folds believed to be of this age commonly have the shape of similar folds with steeply dipping nearly isoclinal limbs that thicken in crests and troughs.

The younger northeast-trending folds southeast of the Hill City fault are represented mainly by large folds like the Bishop Mountain syncline and Summit Peak anticline, which contrast in size to the northeast-trending cross folds of the same age northwest of the fault. The younger folds are overturned and their axial planes dip as much as 60° NW. in the area north of Hill City, but southeast of the Hill City fault, on the flank of the Harney Peak dome, the folds become progressively more recumbent and their axial planes dip as little as 20° NW. The plunge of the younger folds averages 30° S. 67° W. (fig. 1), but tends to decrease close to the granite. The southwest plunge of cross folds on the overturned northeast limb of the Union Hill anticline gives an upside-down stratigraphic sequence in the cross folds, which for this reason are called antiforms and synforms.

Geologic section E-E' (pl. 1) is drawn across the Union Hill anticline parallel to the axes of the northeast folds so as to minimize the effect of these younger cross folds. In this section, the Union Hill anticline is shown as a broad nearly recumbent fold in contrast to the tight form and steep dip of the older folds where shown in other geologic sections. The difference in form is attributed to broad warping of the older folds during late stages of the intrusion of the Harney Peak Granite and formation of the Harney Peak dome.

Other evidence of late warping is the reversal in plunge of northeast-trending folds in several areas as the area east of Zimmer Ridge and the areas northeast of Hill City on Humbolt Mountain, between Ford Mountain and Storm Hill, and at the northeast end of the Summit Peak anticline. Small-scale warps with wavelengths of several feet and north- to northwest-trending gently plunging axes are readily observed in several roadcuts in the southwest part of the quadrangle, where they commonly are associated with quartz and pegmatite intrusions.

The structure is only imperfectly known in the region of the Palmer Creek syncline. The amphibole rock and metagraywacke appear to be repeated on two sides of a fold, and thus call for a syn-
structures indicates that the older folds having axes that plunge forward. Geologic sections A–A’, Bowden Mountain syncline as a forward-dipping axial plane; the trend of the syncline is about the same form in the upper plate as it does not show the effects of folding that is known to be of this age commonly steeply dipping nearly isoclinal folds southeast of the Hill City anticline. In some locations, the folds like the Bishop Mountain anticline, which contrast in size to the same age northwest of the fault. Instead, in some locations, their axial planes dip as much as 80° to the southeast, but southeast of the Hill City anticline, the folds become pro-axial planes dip as little as 20° to the north, averaging 30° S. 67° W. (fig. 1), in the formation. The southwest plunge of the upper limb of the Union Hill anticline sequence in the cross folds, as forms and synforms.

Drawn across the Union Hill anticline, the northeast folds so as to minimize isoclinal effects. In this section, the Union Hill anticline fold in contrast to the other folds where shown in other sections is attributed to broad warping of the intrusion of the Harney Peak dome.

Reversal in plunge of northeast-trending folds east of Zimmer Ridge anticline in Humbolt Mountain, between sections A and B, at the northeast end of the quadrangle, with wavelengths of several miles. Axially plunging axes are readily recognized in the northwest part of the quadrangle, with quartz and pegmatite cline as shown in section D–D’ (pl. 1). Otherwise, a seemingly implausible thickness of rock is required to be overturned on the flank of the dome.

Folds intermediate in age between the older and younger major folds are the most abundant folds in the northwest and northeast parts of the quadrangle. They are restricted to folds of hand-specimen or outcrop size, and thus do not affect the map pattern appreciably.
Typically, these folds trend northward to northwestward like the older folds, but some trend northeastward. The latter are well exposed in outcrops along the north side of U.S. Highway 16, at the east edge of the quadrangle. Steep plunges, 50° to 90°, identify these intermediate-age folds. They can be seen to deform minor folds of the older low-to-moderately-plunging set in the Burnt Fork area (B3–4 on pl. 1) but are not known to deform the apparently younger northeast-trending folds.

FAULTS

Structural discontinuities evident in several places on plate 1 indicate the existence of faults having sizable displacement. Of these, the most noticeable from the map pattern is the Empire fault, which separates northwestward striking units in the northeast corner of the quadrangle from northeastward striking units to the south. Similarly, south of Hill City, the Oreville Formation in the core of the Union Hill anticline is truncated by northeastward striking units on the east side of the Hill City fault. However, direct evidence of faulting in the form of exposed fault breccia and slip surfaces is rare in the Hill City quadrangle, except for numerous small limonitic breccia zones, which generally parallel bedding or foliation and show little or no displacement. The direction and magnitude of displacement of most of the faults shown on plate 1 are uncertain, but the probable relative movement of the faults is shown on the map and sections.

Important north- to northeast-trending faults are the Burnt Fork, Hill City, and Rabbit Gulch faults and the Golden Slipper breccia zone. The Burnt Fork fault is a westward-dipping limonitic shear zone as much as 8 feet wide as exposed in prospect pits between the Gold Mountain mine and Newton Fork. It offsets both limbs of the Lowden Mountain syncline. The Hill City fault cuts diagonally across the center of the quadrangle, and it, or a related break, crops out west of U.S. Highway 16 (B–8 on pl. 1) where about 6 inches of crushed rock and slickensided gouge is present on a mullioned surface that dips 45° northwestward in a zone of intensely folded rocks. The millions plunge about 32° southwestward. The mapped location of the Rabbit Gulch fault is based largely on a reentrant of micaeous schists, which intervenes between two ridges of massive metagraywacke, and a few pieces of slickensided limonitic breccia float north of Sunday Gulch. This fault is on trend with the Golden Slipper silicified breccia zone to the northeast.

A strong topographic lineament, conspicuous on aerial photographs, in the Harney Peak Granite is shown along the northwest side of Elkhorn Mountain (F–10 to G–8 on pl. 1). The lineament is coincident to the northeast with what Norton (1960) mapped as the trend of the
GEOLGY, HILL CITY QUADRANGLE, SOUTH DAKOTA

The Goldern Slipper breccia zone is well exposed both north and south of U.S. Highway 16 near the east edge of the quadrangle, where it is 100 to 250 feet wide and is bordered on the west by a silicified zone as much as 300 feet wide. The breccia consists mainly of angular blocks that attain dimensions of about 1 foot and are separated by limonite-cemented fines, which form a boxwork pattern in relief. The zone splits into two northward-diverging zones south of the Empire mine; one zone continues toward the Golden Slipper shaft and the other goes through the Forest City workings of the Empire mine, both in the Mount Rushmore quadrangle. Whether, or how much, the breccia zones offset the northwest-trending faults cannot be demonstrated from existing outcrops at the Empire mine. The Golden Slipper and Forest City quartz veins were described by Allsman (1940) as striking N. 30° W. and dipping steeply southwest with a fault lying between the veins. The fault between the veins is probably the northeast offshoot of the Golden Slipper breccia zone.

The chief northwest-trending faults in the northeast part of the quadrangle are the Sheridan, Keystone, and Empire faults. The Sheridan and Keystone faults are extensions of major faults for which the main evidence is in the Mount Rushmore quadrangle to the east (J. J. Norton, oral commun., 1966). The Empire fault also was first defined by Norton (1960) in the Mount Rushmore quadrangle, but it is well expressed topographically and by the juxtaposition of geologic units in the Hill City quadrangle, and a slip surface is exposed near E-2 (pl. 1). This fault and the two lesser faults on either side of it extend southeastward toward an intersection with the Golden Slipper breccia zone a few hundred yards into the Mount Rushmore quadrangle. The southernmost of this group of three faults is exposed in pits on the ridge about 200 feet east of the quadrangle border as a 2-foot zone of slickensided limonitic breccia; it joins the Empire fault a short distance east of the pits.

MINOR STRUCTURES

Primary sedimentary structures that have been observed in the quadrangle include graded bedding, load casts, and current or festoon crossbeds. The prevalence of tight minor folds commonly renders these primary structures useless for determining tops of sedimentary units, but graded beds and load casts in turbidite-type sequences of beds in the Bugtown Formation yield some apparently reliable tops in the northeast part of the quadrangle (pl. 1).
Bedding is well preserved throughout much of the quadrangle and usually is accompanied in the finer grained rocks by a parallel foliation or schistosity. In addition, at least one penetrative cleavage commonly cuts the bedding at an angle. Complete transposition of bedding (Turner and Weiss, 1963, p. 94) along younger foliation planes is common. Along the flank of the Harney Peak dome, the subhorizontal schistosity is noticeably flatter than elsewhere; bedding and schistosity in this area are cut by a younger moderately to steeply dipping slip cleavage that probably is the youngest pervasive structure in the quadrangle.

Minor folds from hand-specimen to outcrop size occur throughout the quadrangle and are readily identified in thin-bedded units but are more difficult to outline in the more massive-bedded rocks. Minor fold axes, intersections of S planes, mineral linements, and several forms of fluting, rodding, and boudinage form conspicuous lineations in all parts of the area.

METAMORPHISM

The Hill City quadrangle consists predominantly of pelitic rocks which range from phyllites in the northwest to coarse mica schists in the southeast. Biotite and garnet are present everywhere in rocks of appropriate composition. On the map the staurolite and sillimanite isograds show the approximate northernmost limit of these metamorphic index minerals and are roughly parallel to the contact between granite and schist. An almandine garnet isograd may also exist in the northern part of the quadrangle, but the information on the composition and distribution of the garnets necessary to locate such an isograd is lacking. Andalusite occurs mainly in the staurolite zone, but has been found in a few places north of the staurolite isograd. Widespread retrograde metamorphism is expressed chiefly by coarse chlorite porphyroblasts oriented crosswise to the dominant foliation and by local chloritization of staurolite and muscovitization of andalusite (?).

The isograd pattern indicates a metamorphic aureole related to the granite and pegmatite. The intensity of regional metamorphism that preceded the intrusion of granitic rocks is not precisely known, but it probably was below staurolite grade.

MINERAL DEPOSITS

Mining and prospecting activities in the quadrangle began in 1876. Many small mines have been worked at various times for gold, tin, tungsten, mica, beryl, feldspar, and spodumene. The aggregate value of mineral production is estimated at $1 to $2 million. Production
much of the quadrangle and
lined rocks by a parallel folia-
least one penetrative cleavage
level. Complete transposition of
94) along younger foliation
of the Harney Peak dome, the
latter than elsewhere; bedding
younger moderately to steeply
the youngest pervasive structure
outcrop size occur throughout
in thin-bedded units but are
massive-bedded rocks. Minor
mineral alignments, and several
form conspicuous lineations

gemism

predominantly of pelitic rocks
west to coarse mica schists in
present everywhere in rocks of
the staurolite and sillimanite
most limit of these meta-
gemly parallel to the contact
dline garnet isograd may also
angle, but the information on
e garnets necessary to locate
occurs mainly in the staurolite
places north of the staurolite
morphism is expressed chiefly
ated crosswise to the dominant
staurolite and muscovitization

amorphic aureole related to the
of regional metamorphism that
is not precisely known, but it

Deposits

the quadrangle began in 1876.
at various times for gold, tin,
sudumene. The aggregate value
$1 to $2 million. Production

records are fragmentary, but gold ranks first, probably accounting
about 50 percent of the value of minerals produced, and spodumene
probably ranks second. Feldspar, beryl, and mica from pegmatites
and tungsten minerals from quartz veins account for a few tens of thou-
sands of dollars in past production. The largest mining operation in
recent years was the Mateen spodumene pegmatite of the Lithium
Corp. of America, but this mine was placed in standby in 1956,
although a large share of the reserves reported by Page and others
(1953, p. 155–156) still remains.

The most comprehensive mining effort was from 1884 to 1893 when
an English firm, the Harney Peak Tin Mining, Milling and Manu-
facturing Co., prospected a large number of quartz veins and pegma-
tites for cassiterite. An estimated 120 tons of metallic tin, valued at
$70,000 to $80,000 was mined, principally during the tin boom of
the southern Black Hills between 1884 and 1912 (South Dakota State
Planning Board, 1936). The cassiterite occurs in small pegmatite dikes
or in quartz veins with muscovite selvages, most of which occur within
a mile to the west and south of Hill City.

Gold was mined chiefly during 1890–1910, but sporadic activity, in
part stimulated by the price increase in 1934, continued until about
1940. The gold occurs in quartz fissure veins and in mineralized shear
zones in the Precambrian schists. The J.R. mine has the largest
recorded production, about 12,000 ounces (Allsmn, 1940). Only two
other mines in the quadrangle, the Sunnyside and Golden Summit,
have a recorded production of 500 ounces or more. However, about
6,000 ounces of gold has been produced from the Empire mine, just
east of the quadrangle boundary (near G-5, pl. 1).

The age of gold mineralization is not known, but the fresh nature
of the breccia along some limonite shear zones, such as the Burnt
Fork fault, suggests that some of the mineralization occurred in the
Tertiary. Some gold veins in the Berne quadrangle, according to
Redden (1968), are younger than pegmatites associated with them.

The geologic controls of the mineral deposits are as follows: The
pegmatites occur in the aureole of the Harney Peak Granite, where
their emplacement was controlled by bedding and foliation con-
cordant to the batholith, and by crosscutting joints. Mappable deposits
of spodumene, feldspar, and mica are restricted to zoned pegmatites,
but cassiterite and tungsten minerals are more common in quartz
veins and small unzoned pegmatites. Gold deposits are most common in
northeast- to northwest-trending quartz veins and shear zones, and
their distribution shows no apparent relation to the granite. Detailed
structural and lithologic controls cannot be ascertained because the
principal gold mines are inaccessible.
Descriptions of individual mining properties in the Hill City area and appraisal of the mineral resources of gold and the valuable pegmatite minerals of the Black Hills, S. Dak., are given in several publications including the following: South Dakota Geological Survey (1964); U.S. Bureau of Mines (1955); Page and others (1953); Allsman (1940); and Gardner (1939).

REFERENCES CITED

