GROUND WATER MOVEMENT WITHIN TILL IN LINCOLN COUNTY, SOUTH DAKOTA

by

DERRIC L. ILES
ASSAD BARARR
and
LYNN S. HEDGES

Science Center
University of South Dakota
Vermillion, South Dakota
1996
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Purpose and scope</td>
<td>1</td>
</tr>
<tr>
<td>Location of study area</td>
<td>1</td>
</tr>
<tr>
<td>METHODS</td>
<td>2</td>
</tr>
<tr>
<td>Drill hole identification and location</td>
<td>2</td>
</tr>
<tr>
<td>Drilling and construction of piezometers</td>
<td>2</td>
</tr>
<tr>
<td>Collection and use of large diameter core samples</td>
<td>3</td>
</tr>
<tr>
<td>Determination of hydraulic conductivity</td>
<td>3</td>
</tr>
<tr>
<td>Collection of water samples</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>Bedrock</td>
<td>3</td>
</tr>
<tr>
<td>Glacial</td>
<td>4</td>
</tr>
<tr>
<td>Outwash</td>
<td>4</td>
</tr>
<tr>
<td>Till</td>
<td>4</td>
</tr>
<tr>
<td>HYDROLOGY</td>
<td>5</td>
</tr>
<tr>
<td>Water levels</td>
<td>5</td>
</tr>
<tr>
<td>Bedrock</td>
<td>5</td>
</tr>
<tr>
<td>Outwash</td>
<td>5</td>
</tr>
<tr>
<td>Till</td>
<td>6</td>
</tr>
<tr>
<td>Effect of piezometer intake area on water levels</td>
<td>6</td>
</tr>
<tr>
<td>Rate of recovery</td>
<td>6</td>
</tr>
<tr>
<td>Water elevation</td>
<td>7</td>
</tr>
<tr>
<td>Construction integrity and post-construction activity</td>
<td>7</td>
</tr>
<tr>
<td>Weathered till</td>
<td>8</td>
</tr>
<tr>
<td>Unweathered till</td>
<td>8</td>
</tr>
</tbody>
</table>
HYDROLOGY -- continued.

Vertical gradients .. 9
Hydraulic conductivity of till 9
Vertical water movement in weathered till 10
Vertical water movement in unweathered till 10
Lateral water movement in the till 11
Water chemistry .. 13
Bedrock .. 13
Glacial .. 14
Outwash .. 14
Till .. 14
Age of ground water .. 14

SUMMARY AND CONCLUSIONS ... 15
REFERENCES CITED .. 16

FIGURES

1. Locations of till research areas in South Dakota 17
2. Location of the study area and till piezometer sites 18
3. Locations of cross sections ... 19
4. Cross section A-A' ... 20
5. Cross section B-B' ... 21
6. Inferred extent of outwash which underlies sites 1, 2, and 3 22
7. Cross section A-A',A' .. 23
8. Area in which the potentiometric surface of a buried outwash is above land surface ... 24
9. Till piezometers at site 1 ... 25
10. Till piezometers at site 2 ... 26
11. Till piezometers at site 3 ... 27
FIGURES -- continued.

12. Hydrograph of till piezometers at site 1 ... 28
13. Hydrograph of till piezometers at site 2 ... 29
14. Hydrograph of till piezometers at site 3 ... 30
15. Topographic map of the study area .. 31
16. Idealized hydrologic cross section at site 2
 assuming a linear water table slope ... 32
17. Idealized hydrologic cross section at site 2
 assuming a nonlinear water table slope ... 33
18. Oxygen-18 and deuterium values from weathered till,
 unweathered till, and outwash ... 34

TABLES

1. Mineralogical data from two till samples .. 35
2. Vertical gradients between piezometers at sites 1, 2, and 3 36
3. Calculated hydraulic conductivity values of till 37
4. Water level rise versus water volume ... 38
5. Calculation of potential discharge to Snake Creek
 per square foot of seepage face ... 39
6. Average water quality of selected hydrologic units 40
7. Isotope data for selected hydrologic units 41

APPENDICES

A. Logs of piezometers completed in till ... 42
B. Logs of drill holes used in figures 4, 5, and 7 66
C. Soil property data for two till samples .. 78
D. Water level data from site 1 ... 79
E. Water level data from site 2 ... 80
F. Water level data from site 3 ... 81
G. Water quality analyses from till and outwash 82
INTRODUCTION

Purpose and Scope

This report was prepared to provide the results of research on the potential for water movement through till in an area of Lincoln County, South Dakota. The Lincoln County area is one of three areas that have been studied in South Dakota (fig. 1). The data presented in this report from the till study sites in Lincoln County were gathered from August 1984 through August 1986.

The impetus for this type of research was an interest at local, state, and national levels on the feasibility of large-scale irrigation of South Dakota soils which are derived mainly from till. Major concerns when irrigating are potential problems of soil salinization and water logging. Thus, it is essential to understand and quantify the movement and fate of water which percolates below the root zone in order to fully understand and predict the ramifications of long-term irrigation.

Concepts of water movement through till were examined and discussed by the South Dakota Geologic Survey in March of 1983 (Barrar, 1983). Barrar pointed out that there were problems with the traditional conceptual models used to explain water movement through till. Specifically, these models generally attributed dissipation of water in the till to:

1. significant downward movement of water through unweathered till, and/or
2. significant lateral movement of water through weathered and unweathered till.

Barrar suggested that these two concepts could not account for enough water movement to balance the water budget. Rather, he suggested, that most water reaching the water table in till is dissipated through upward movement by the process of evaporation.

To test the validity of the above-mentioned theory and to define and characterize ground water movement through till, three areas in eastern South Dakota with different hydrogeologic conditions were chosen for detailed investigation. Study results from two of the three areas were presented by Barrar and Hedges (1985). Results from the third area of study, the Lincoln County area, are contained in this report.

The results of this and other ongoing research will have significant impacts beyond the specific problems identified with irrigation. For example, there will be impacts on (1) the selection, design, and monitoring of waste disposal sites, (2) regulation and cleanup of contamination sites, and (3) estimates of recharge to buried glacial aquifers.

The Lincoln County area was chosen for study because of a unique site condition which sets it apart from other areas studied in South Dakota. This study area is underlain by an outwash which is under confined, flowing hydraulic conditions.

Location of Study Area

This study area is located in Lincoln County, South Dakota, and consists of three investigation sites (fig. 2).
METHODS

Drill Hole Identification and Location

The methods of drill hole and/or piezometer designation, such as GT-LN-1A, and locations, such as 099N-50W-24BBB, are explained in appendix A.

Drilling and Construction of Piezometers

The word "piezometer" as used in this report refers to any drill hole with casing for the intended purpose of measuring water levels or collecting water samples. All drill holes, except one (GT-LN-3F), were drilled using 4-inch diameter solid flight auger. The exception was drilled using an 8-inch outside diameter, hollow stem auger. A total of 38 piezometers were installed.

After the desired bottom-hole depth was reached, the auger was removed from the hole and 2-inch diameter, schedule 80, threaded joint, polyvinyl chloride (PVC) casing was inserted. A well screen was attached to the bottom of the casing prior to insertion in only two instances (piezometers GT-LN-1G and GT-LN-2D, app. A). In these two piezometers, a filter pack was placed around the outside of the well screen. The filter pack was composed of quartz and feldspar with a grain size of very coarse sand to very fine gravel. For the other 36 piezometers, the open-ended bottom of the casing was ground to a sharp edge and covered with a thin flexible cap prior to insertion into the hole. The thin flexible cap was used to keep foreign matter out of the casing during insertion. For those piezometers without a well screen, the casing was pushed approximately 3 inches into bottom-hole sediment. Pushing the casing into the bottom-hole sediment served to:

1. cut the thin flexible cap thereby allowing a hydraulic connection with the sediment, and

2. provide a seal around the end of the casing between the annular space on the outside of the casing and the water-intake area at the bottom of the casing.

The annulus around the outside of the casing was then filled with a bentonite slurry having at least a 60-second per quart Marsh Funnel viscosity. This was accomplished by pumping the slurry from the bottom of the annulus to the top (ground surface). In 32 of the 36 piezometers without well screens, a 1.5-inch diameter thin wall tube sampler (shelby tube) was then inserted inside the casing, and a 12-inch long core sample was taken of the bottom-hole sediment. Completion techniques were the same in the other four piezometers except the bottom core sample was not taken.

Thus, the water-intake area of the 38 piezometers consisted of one of the following:

1. a 5- or 10-foot long well screen (piezometers GT-LN-1G and GT-LN-2D respectively, app. A),

2. the area of the open-ended casing directly in contact with bottom-hole sediment (piezometers GT-LN-1B, GT-LN-1E, GT-LN-2B, and GT-LN-3F, app. A), or

3. the area of the open-ended casing plus the open hole remaining after collection of bottom-hole sediment using a Shelby tube (in the remainder of the piezometers, app. A).
Collection and Use of Large Diameter Core Samples

Four core samples, 5-inch diameter by 2.5-feet long, were obtained using a hollow stem auger rig: two from weathered and two from unweathered till. These samples were used for grain-size analyses, determination of mineralogical composition, and determination of hydraulic conductivity in the laboratory.

Determination of Hydraulic Conductivity

Hydraulic conductivities of the till were determined in three ways. Two methods were to use procedures described by Horslev (1951) and Luthin and Kirkham (1949) utilizing recovery measurements of ground water in piezometers completed in till. The third method was to use the undisturbed 5-inch diameter by 2.5-feet long core samples of till for laboratory analysis. Two different methods were used for this analysis: (1) high pressure permeability method, U.S. Bureau of Reclamation; and (2) flow pump permeability method, University of Colorado, Boulder, Colorado.

Collection of Water Samples

Water samples for chemical analysis were collected using a clean teflon baller. No specific amount of water was removed from each well before sampling occurred because of extremely slow recharge to many of the piezometers.

GEOLOGY

Bedrock

Bedrock beneath the study area consists of Precambrian age Sioux Quartzite which is overlain by Cretaceous age sediments. The Cretaceous sediments are, in ascending order from oldest to youngest, the Dakota Formation, Graneros Shale, Greenhorn Limestone, Carlile Shale, and Niobrara Formation.

Sioux Quartzite is a very hard, silica cemented, fine- to medium-grained sandstone (orthoquartzite) which locally has been extensively fractured. The thickness of the Sioux Quartzite is unknown. The Dakota Formation consists of about 200 to 300 feet of interbedded sand, siltstone, clay, and sandy clay. The Graneros Shale, Greenhorn Limestone, and Carlile Shale are all basically clays or shales with a combined thickness of about 150 to 300 feet. The Niobrara Formation ranges from 0 to 14 feet thick and is composed primarily of calcareous silt and clay. Thicknesses given are for the immediate vicinity of investigation sites 1, 2, and 3. Figure 3 shows the locations of cross sections drawn through the study area. Figures 4 and 5 show the stratigraphic relationships between the various bedrock units near and through the study area. Logs of drill holes used in the figures can be found in appendix B. At one location (098N-90W-32AAAA), data from two drill holes were used in constructing figure 5. The bedrock correlations are based on examination of subsurface samples and electric log interpretations.
Glacial

Pleistocene age sediments consisting of till and outwash cover the entire study area and range in thickness from 68 to 223 feet in the drill holes used to construct figures 4 and 5. The till is composed of a clay and silt matrix containing sand, gravel, pebbles, and boulder-size particles. Outwash is composed of sand and/or gravel and may or may not contain clay layers or lenses.

Outwash

Outwash is present beneath the study area with depths to the top of the outwash ranging from 49 to 120 feet (figs. 4 and 5). The outwash layer ranges in thickness from near 0 to 116 feet and may contain some clay layers or lenses.

The occurrence and lateral continuity of the outwash are not fully defined throughout the study area. However, the existence of buried outwash at sites 1 and 2 has been documented by test drilling and the existence of outwash beneath site 3 is inferred from other test hole and private well data. Lateral continuity of the outwash among the three sites and throughout at least an 8 square mile area in the immediate vicinity of the sites is assumed and will be discussed later in this report.

Outwash underlying sites 1, 2, and 3 is presently correlated with that which occurs northeast of the study area near Harrisburg (fig. 6). Figure 7 further illustrates the inferred lateral continuity of the outwash between Harrisburg and the vicinity of sites 1, 2, and 3. It should be noted that cross section A-A'-A" (fig. 7) has an east-west component, which is A-A' (fig. 4), and a north-south component, which is A'-A". Also, two drill hole logs were used at one location (099N-50W-02AABA) in constructing figure 7.

Till

A mantle of late Wisconsin age till is ubiquitous throughout the study area (Schroeder, 1972). It contains a surficial weathered (oxidized) layer that ranges in thickness from 12 to 36 feet in the test holes shown on figures 4, 5, and 7, and from 18 to 28 feet in the test holes at sites 1, 2, and 3. A description of the weathered till, based on soil trimmings from a core sample, is provided in appendix C.

An unweathered layer of gray till underlies the upper brown, weathered layer. The first (shallowest) occurrence of unweathered till may be directly underlain by any of the following:

1. outwash,
2. an apparent zone of weathering in the till, or
3. the Niobrara Formation.

Thickness of the upper layer of unweathered till ranges from 28 to 96 feet in test holes shown on figures 4 and 5 and is at least 49, 48, and 44 feet thick, respectively, at sites 1, 2, and 3. A description of the unweathered till, based on soil trimmings from a core sample, is provided in appendix C.
Grain size analysis was performed on two samples of weathered till taken at site 1 from depths of 5 to 7.5 feet and 25 to 27.5 feet. These analyses show the textural classification to be that of a clay loam (according to terminology used and accepted by the U.S. Bureau of Reclamation). It is believed that these analyses may be representative of till present in and near sites 1, 2, and 3. Other soil properties that were determined from the same two samples are listed in appendix C.

Core samples of till from this study area were not examined for the presence of fractures. Fractures in till have been reported in other areas of South Dakota (Beadle and Union Counties, fig 1) where visual examination of cores found weathered till to contain fractures with secondary mineralization (T. Cowman, South Dakota Geological Survey, personal communication, 1986).

Two samples of till from site 1, one weathered and one unweathered, were examined for mineralogical content using the x-ray diffraction method (table 1). Results listed in table 1 show that there is slightly more gypsum, slightly less pyrite, and much more iron oxides present in the weathered till (sample 62Q-1) than in the unweathered till (sample 62Q-2). These differences may be due to the oxidizing conditions present in the weathered till. The sulfide in pyrite may be oxidized to sulfate; evidence of this is a high sulfate content in the ground water from weathered till. This sulfate would then potentially be available for chemical interaction and incorporation into authigenic gypsum. Iron oxides are visible as the brownish coloration in the weathered till. Percentages for minerals listed in table 1 are believed to be representative of the weathered and unweathered till within the study area.

HYDROLOGY

Water Levels

Bedrock

The only bedrock unit for which water level data are available is the Dakota Formation. This is also the only bedrock unit in the study area which is commonly used as a source of ground water, although in some instances, the Niobrara Formation may be utilized. The Graneros Shale, Greenhorn Limestone, and Carrilie Shale are not considered aquifers and act as a confining layer between the Dakota Formation and overlying Pleistocene sediments.

The top of the Dakota Formation is at a depth of about 350 to 450 feet in the study area, and is under confined conditions. Data on the potentiometric surface were obtained from many observation wells completed in the Dakota Formation in this area. The potentiometric surface of water in the Dakota Formation ranges from about 100 feet to more than 200 feet below land surface and is everywhere lower than the potentiometric surface of the outwash and the water table in the weathered till, and is below the base of these glacial sediments throughout much of the area (fig. 7).

Outwash

Outwash is under confined conditions at, and in the vicinity of sites 1, 2, and 3, but is under unconfined conditions in the vicinity of Harrisburg (figs. 3 and 7). The potentiometric surface of the outwash shows that water from wells completed in the outwash will flow onto the land surface at sites 1, 2, and 3 (fig. 7). Although the full extent of the area containing flowing wells is not documented,
a quick reconnaissance of local farm wells indicated at least an 8 square mile area with flowing wells (fig. 8).

The hydraulic head in the outwash body that underlies sites 1, 2, and 3 generally decreases from north to south. Hydraulic head in the outwash in the vicinity of the study sites is sufficient to produce flowing well conditions. Water levels in the outwash are about 12 feet higher near Harrisburg than they are in the vicinity of the study sites. Data show that part of the outwash in the northern part of the outwash body is unsaturated at 099N-50W-02AABA and 099N-50W-24BBBB (fig. 7), however, the hydraulic connection of the area containing unsaturated outwash to the area where flowing wells occur is not fully defined.

The spatial relationship of till underlain by outwash that produces flowing wells was the primary reason this area was chosen for study. The significance of this relationship will be addressed later in this report.

Till

Cross sections showing the relationship of weathered and unweathered till to the depth and construction of piezometers used to examine water levels are shown in figures 9, 10, and 11. Logs and piezometer completion data are in appendix A. Water levels accurate to the nearest 0.01 foot were measured on a regular basis in these piezometers from October 22, 1984, through May 19, 1986 (apps. D, E, F). Hydrographs of these piezometers completed in till at sites 1, 2, and 3 are presented in figures 12, 13, and 14, respectively. The water elevations shown on the hydrographs are relative to mean sea level.

When analyzing water level recoveries in materials of low hydraulic conductivity, especially unweathered till, there are two groups of factors that could influence the recovery rate. One group relates to the effects of intake area on water level recovery rates. The other group relates to construction integrity and post-construction activities or changes that may alter the rate of water level response.

EFFECT OF PIEZOMETER INTAKE AREA ON WATER LEVELS

Rate of Recovery

The rate of water level recovery is dependent upon the area of the intake zone (all other conditions being equal). It should be recalled that piezometers used in this study were constructed having three different intake areas:

1. a filter-packed well screen (5 or 10 feet long, 0.038-inch slot size),
2. open-ended casing in direct contact with bottom-hole sediment including a 12-inch long by 1.5-inch diameter Shelby tube core hole in the bottom-hole sediment, or
3. open-ended casing in direct contact with bottom-hole sediment (no Shelby tube core hole).
Thus, the rate of water level recovery should be highest in item 1 above and lowest in item 3 in unweathered till and the lower portions of weathered till. This relationship is probably not valid for piezometers completed in the upper portion of the weathered till where the dominant water level response is assumed to be due to fracture flow and not intergranular flow. Hydraulically active fractures present in the water-intake area at any depth have the potential to be the dominant control on recovery rates.

In unweathered till, the only comparison of water level recovery rate that can be made between piezometers of similar depth with intake areas of items 2 and 3 above are at site 1 (GT-LN-1E and GT-LN-1D; figs. 9 and 12). At the other two sites, such comparisons between piezometers of similar depth are impossible because of the apparent influence of a more permeable zone at piezometer completion depth. At site 1, piezometer GT-LN-1D (shelby tube core intake) shows a substantially greater rate of recovery than piezometer GT-LN-1E (open-ended casing intake). The faster recovery rate may be due to the larger water-intake area.

Water Elevation

In weathered till at sites 1 and 2, the screened piezometers and shallowest shelby tube core intake piezometers (figs. 9 and 10) exhibit similar water level readings. This similarity in water levels is probably because the piezometers with screens, although deeper, intersect the same horizon as the shallower piezometers. As a result of screen length, those piezometers with a screen do not reflect the hydraulic pressure from a specific horizon. Thus, water levels in them cannot be directly compared to those in other piezometers with a small intake.

CONSTRUCTION INTEGRITY AND POST-CONSTRUCTION ACTIVITY

In addition to the influence of the water-intake area on the water level recovery rates, the following factors must also be evaluated:

1. A break in the casing during installation or at a later date,
2. Incomplete grouting procedures,
3. Breakdown of grout integrity with time, and
4. Effects of piezometer development or other causes for water withdrawal.

In general, a loss of integrity with casing or grouting material, or post-construction activity, would tend to increase the rate of water level recovery. Recovery curves from piezometers completed in the lower weathered till and unweathered till (figs. 12, 13, and 14) do not reflect a breakdown in construction integrity or post-construction activity resulting in an increase in water level recovery. A probable exception to this general conclusion is noted at piezometer GT-LN-2C (fig. 15) which shows a higher recovery rate after water withdrawal.
WEATHERED TILL

Water level fluctuations in piezometers completed in shallow weathered till are similar to fluctuations in open holes. This is partially illustrated by two holes that were drilled to depths of 8 and 6 feet, respectively, at sites 1 and 2 (one at each site) and were left open. Water levels were monitored in both holes (apps. D and E) and were found to fluctuate similarly (correlation coefficients of 0.99 or greater) with levels in shallow piezometers GT-LN-1G and GT-LN-1H (figs. 9 and 12) and GT-LN-2D and GT-LN-2F (figs. 10 and 13). This relationship indicates that those shallow piezometers correctly reflect the water table response in shallow weathered till. Two other piezometers completed in weathered till, GT-LN-3C and GT-LN-3D (figs. 11 and 14), also reflect a direct connection to infiltrating water. Examination of hydrographs for these piezometers (figs. 12, 13, and 14) reveals:

1. a very shallow water table throughout the period of monitoring, and
2. a striking similarity in water level response.

Piezometers GT-LN-1F (figs. 9 and 12) and GT-LN-2A (figs. 10 and 13) are the deepest piezometers in weathered till at their respective sites. Water levels in these piezometers do not show response to precipitation events or seasonal variations. This lack of water level response to precipitation events or seasonal variations is not surprising, even though they are completed in weathered till. Headly (1983) points out that the presence of vertical conduits (fractures) in weathered till plays an important role in the path and velocity of water movement through the till. The degree of response in any given piezometer to precipitation or seasonal variations is dependent upon the number, size, and continuity of fractures which are intersected by the water-intruse area of the piezometer and upon the hydraulic conductivity of the till. Those piezometers completed in the lower portion of the weathered till where the hydraulic conductivity is likely to be low may not intersect any fractures, thus, they may not show response to precipitation events or seasonal variation.

UNWEATHERED TILL

Piezometers completed in unweathered till (figs. 9, 10, and 11) exhibit a wide range of water level recovery rates (figs. 12, 13, and 14). The fastest rates of recovery are recorded in the deepest piezometers at all three sites (those with drill hole depths of 67 and 70 feet). At site 1 (piezometers GT-LN-1A and GT-LN-1B) and site 3 (piezometer GT-LN-3A), visual examination of the bottom-hole core showed the presence of more highly permeable (silty) material overlying the buried outwash. The log of the deep drill hole at site 2 (piezometer GT-LN-2E) did not indicate more permeable material at completion depth.

Response curves for piezometers GT-LN-1C, -1D, and -1E at site 1 and response curves for piezometers GT-LN-2B and -2C at site 2 (figs. 12 and 13) are typical response curves for unweathered till. However, response curves for piezometers GT-LN-3B and -3E at site 3 (fig. 14) exhibit fluctuations as they approach water table elevations. These fluctuations do not mirror the shallow water table fluctuations in the weathered till. The condition or conditions causing different behavior at site 3 as compared to the other sites is unknown.

8
As previously mentioned, the two deepest piezometers at each of sites 1 and 3 (figs. 9 and 11) were apparently completed in a silty zone above the outwash. This material undoubtedly has a higher hydraulic conductivity than the till which explains the rapid water level recovery to an elevation above or near land surface (figs. 12 and 14). Water flows continuously from one deep piezometer (GT-LN-1A) and much of the time from the other deep piezometer at site 1 (GT-LN-1B) but does not quite reach land surface in the two deep ones at site 3 (GT-LN-3A and -3F). Site 3 has a higher land surface elevation than site 1 and water elevations in the deep piezometers at site 3 may reflect the potentiometric surface of the outwash.

VERTICAL GRADIENTS

During the period of water level measurements, a consistent upward or downward vertical gradient was not determined throughout the till because the water levels did not reach equilibrium (apps. D, E, and F). Some of the water level differences may be attributed to water-intake area construction methods as discussed earlier. However, when only those wells that are completed with the open-ended casing plus Shelby tube core are considered (figs. 2, 10, and 11), the results shown in table 2 still show an inconsistent vertical gradient. The implication of the vertical gradients at equilibrium with respect to resulting direction of vertical flow of water will be discussed later in this report under the section entitled "Vertical Water Movement in Unweathered Till."

Hydraulic Conductivity of Till

Hydraulic conductivity values were obtained for till at all three investigation sites. The specific piezometers involved and the hydraulic conductivity values obtained are listed in table 3. Using the average of methods described by Luthin and Kirkham (1949) and Hvorslev (1951), the hydraulic conductivity of the unweathered till was calculated to range from 7.4 x 10^-6 to 4.5 x 10^-6 centimeters per second (cm/sec) with a geometric mean of 1.8 x 10^-6 cm/sec. The hydraulic conductivity of the weathered till was calculated to range from 1.5 x 10^-6 to 4.2 x 10^-6 cm/sec with a geometric mean of 2.5 x 10^-6 cm/sec (table 3). The range and geometric mean for the weathered till are exclusive of a calculated value of 1.7 x 10^-6 cm/sec (Hvorslev method) for piezometer GT-LN-2H. The data from this piezometer were not suitable for analysis using the Luthin and Kirkham method, thus no average for the two methods could be obtained.

Hendry (1982) and Prudic (1982) both indicated that hydraulic conductivities in weathered till range up to 3 orders of magnitude higher than those for unweathered till. The unweathered till they were using for comparison had a hydraulic conductivity of 1.0 x 10^-6 cm/sec, which is similar to the hydraulic conductivities determined for unweathered till for this report (table 3). The range in differences between weathered and unweathered till reported by Hendry (1982) and Prudic (1982) agrees favorably with those shown in table 3 (column labeled "Average of the two methods").

A core sample of unweathered till collected at a depth of 25 to 27.5 feet from site 1 was submitted to the U.S. Bureau of Reclamation, Engineering and Research Center, Soils Mechanics Section, in Denver, Colorado, for determination of hydraulic conductivity. The core was 5 inches in diameter and approximately 29 inches long and was collected from a test hole adjacent to the piezometers. The hydraulic conductivity was determined to be less than 9.6 x 10^-6 cm/sec, the lower
The sample was then submitted by the U.S. Bureau of Reclamation to the University of Colorado, Department of Civil, Environmental, and Architectural Engineering, for further attempts at determination of hydraulic conductivity using a different method. Results from the University of Colorado indicate a vertical hydraulic conductivity of 1.26×10^{-6} cm/sec (L. Faris, U.S. Bureau of Reclamation lab, personal communication, 1986). The horizontal hydraulic conductivity was not determined.

The estimates of hydraulic conductivity for unweathered till listed in table 3 and the estimate supplied by the U.S. Bureau of Reclamation are all within an order of magnitude and show that the unweathered till has a very low hydraulic conductivity.

Vertical Water Movement in Weathered Till

Rising water levels in piezometers completed in weathered till are the result of water in excess of soil storage capacity entering the ground surface. These fluctuations can be attributed to, and correlated with, recharge events caused by precipitation. The relatively rapid response of water levels in these piezometers is attributed to secondary permeability (fractures) in the weathered till. The similarity of water levels in most piezometers completed at different depths in weathered till is also attributed to fractures in the till.

The data may indicate that fracture density and/or continuity in weathered till decrease with depth and thus, affect vertical water movement in weathered till. Evidence supporting this conclusion is suggested by water level responses in piezometers CT-LN-1F and GT-LN-2A (Figs. 12 and 13). These piezometers are the deepest completed in weathered till at sites 1 and 2. Water level responses from these piezometers are more representative of responses observed in unweathered till where fracture flow is thought to play an insignificant role in water movement.

Data gathered show that vertical water movement occurs in much of the weathered till, presumably through avenues of secondary permeability, as evidenced by fluctuating water levels in most of the piezometers in the weathered till.

Vertical Water Movement in Unweathered Till

Water levels in piezometers completed in unweathered till at the test sites did not reach equilibrium during the period of record shown in appendices D, E, and F. 19 to 23 months after piezometer completion. Thus, the vertical gradients at equilibrium could not be observed. The only way to evaluate resulting vertical gradients with available data is to assume probable ending equilibrium conditions and draw conclusions from the various possible scenarios. The same approach was taken by Barari and Hedges (1985) and the following quote is from their report:

The potentiometric surface of water in the aquifer at the Lincoln County site is above the land surface. Thus, there can be no downward movement of ground water through the unweathered till. It is recognized that measured water levels in the till
probably have not reached equilibrium at the time of this writing (1 month after completion and evacuation of piezometers). However, the following scenarios can be examined using basic hydrologic principles which are based on the assumption that equilibrium has been established for the conditions described for each scenario.

Scenario 1

Water levels in piezometers constructed in unweathered till are lower than the water table in weathered till and do not show a consistent upward gradient.

This scenario shows that there is no upward movement of water in the unweathered till. If this scenario does in fact prove to be true at this location, then it shows that upward flow is nonexistent even though the potentiometric surface is above the ground level. Thus, a threshold gradient must be reached in low permeable material before actual movement of water occurs.

Scenario 2

Water levels from piezometers in the unweathered till are at essentially the same level as the water table in weathered till.

In this scenario, there can be no upward movement of water because water levels in unweathered and weathered till are equal.

Scenario 3

The water level in piezometers constructed in unweathered till come to equilibrium at higher levels than water levels in weathered till, and show progressively higher water levels in deeper piezometers.

In this scenario, upward movement of water may occur.

If it is assumed that the condition represented in scenario 3 is the resulting equilibrium condition, and using the geometric mean of the average vertical hydraulic conductivity values in table 3 for unweathered till (1.8 x 10^{-6} cm/sec) and assuming a very high hydraulic gradient of one (1.0), the upward movement of water through the unweathered till cannot exceed 0.6 cm per year (Darcy velocity).

Lateral Water Movement in the Till

Laboratory analysis of unweathered till core from east-central South Dakota in the CENDAK area (fig. 1) yielded a horizontal hydraulic conductivity of 1.2 x 10^{-6} cm/sec (Faris, 1986). If values of this magnitude stand the test of continuing research, the lateral movement in unweathered till cannot be significant under reasonable gradients.
Research activities for this report were not designed to gather evidence for lateral ground water movement through weathered till. In spite of this, a quantification of lateral flow in weathered till using a conceptual model and some known site parameters is presented. Calculations include a range of values for recharge and for possible minimum quantities of lateral flow under field conditions that existed at site 2. Site 2 was chosen for illustration because the best possible case for lateral ground water movement can be made at that site relative to the other two sites; the distance to the discharge point is shorter and the maximum theoretical horizontal gradient is highest. Water level rise reported in appendix E was used to calculate the recharge. A rise of 3.45 feet was measured in well GT-LN-2D between February 26, 1966, and April 16, 1986. It should be noted that this recharge occurred during a limited period of time and the annual recharge is greater than this value. Table 4 lists the volume of water recharging 1 square foot of land and also the volume of water recharging a strip of land 1 foot wide and 1,080 feet long, the distance between site 2 and a possible lateral discharge zone (Snake Creek). A water level rise of 3.45 feet and specific yield values of 1 and 10 percent were used for calculation. For comparison, testing in the CENZAK area showed a specific yield ranging from 2.2 to 13 and averaging between 5 and 6 (U.S. Bureau of Reclamation, 1986).

If the water is to move laterally and discharge at Snake Creek (fig. 15), then a minimum amount to be discharged from this strip of land has to be 37.26 cubic feet annually. To calculate the possible discharge of water to Snake Creek, Darcy's Law is employed. Assuming that Darcy's Law is applicable in fractured material of low permeability such as weathered till, then $Q = AKi$, where:

\[
Q = \text{amount of flow in gallons per day}
\]

\[
A = \text{cross sectional area through which flow occurs in square feet}
\]

\[
K = \text{hydraulic conductivity in gallons per day per square foot}
\]

\[
i = \text{horizontal hydraulic gradient in feet per feet}
\]

At site 2, values of hydraulic conductivity (Hvorslev method) for the weathered till were found to range from 1.7×10^{-3} to 1.7×10^{-4} cm/sec (table 3) with a geometric mean of 3.2×10^{-4} cm/sec and an average of 3.4×10^{-4} cm/sec. The maximum value of 1.7×10^{-3} cm/sec was from a piezometer which was 6 feet deep and thus closest to the water table at this site as compared to the completion depths of the other weathered till piezometers at this site. For comparison, values of hydraulic conductivity at site 1 from piezometers with depths of 3 and 6 feet were found to be on the order of 10^{-5} cm/sec, which is significantly less than 1.3×10^{-4} cm/sec but which is consistent with the calculated geometric mean for weathered till. For the purpose of this report, potential lateral movement of ground water in the weathered till assumes hydraulic conductivities ranging from 1.7×10^{-3} to 1.5×10^{-4} cm/sec, which brackets the experimental results for weathered till at sites 1 and 2.

The gradients assumed for the calculations are represented by assumed linear and nonlinear water table slopes on a flow path along the shortest distance between site 2 and Snake Creek to the south-southeast (figs. 15, 16, and 17). The vertical distance between ground surface at site 2 and the bottom of the intermittent stream (Snake Creek) is about 9 feet along a horizontal distance of 1,080 feet. Thus, the maximum gradient calculated for the linear water table slope is 0.0085 feet per foot (ft/ft). However, if it is assumed that the water level declines 4 feet in the last 200 feet from the creek, then the nonlinear gradient over that 200 feet is 0.02 ft/ft.
Estimates of potential lateral discharge of ground water were based on the assumption that the intermittent stream (Snake Creek) has an average water depth of 1 foot during the year (the vertical dimension of the seepage face is 1 foot). Table 5 summarizes the annual potential discharge from a 1 foot square cross sectional area of land (seepage face) along Snake Creek under the two assumed gradients.

Table 5 shows a maximum discharge to the creek of 14.95 cubic feet per year from 1 square foot of land (seepage face) under the assumed gradient of 8.5 x 10^3 (linear water table slope) and a hydraulic conductivity of 1.7 x 10^-2 cm/sec. This discharge is much less than 37.26 cubic feet (table 4), the minimum calculated recharge to the water table.

It is recognized that the slope of the water table from site 2 to Snake Creek is probably not linear and that the slope will increase near the discharge point. Therefore, discharge calculations were made using the non-linear gradient of 0.02 and a hydraulic conductivity of 1.7 x 10^-4 cm/sec. This calculation yielded a discharge of 35.18 cubic feet per year. Under this scenario, the gradient would be less than 0.02 and the hydraulic conductivity would have to be greater than 1.7 x 10^-3 cm/sec beyond 200 feet from the seepage face in order to balance the water budget. Thus, in order to dissipate a minimum calculated recharge in a lateral direction, the following conditions would have to be satisfied:

1. the till must possess a hydraulic conductivity greater than the maximum recorded in till in Lincoln County,
2. a lateral hydraulic gradient must be present in the till that is probably near the maximum possible under any circumstances for site 2, and
3. a consistently high enough water table must exist to create a seepage face along an intermittent stream.

This illustration indicates that even under the most favorable conditions, lateral movement is not capable of dissipating the minimum calculated recharge. Less favorable conditions of hydraulic conductivity and gradient would only widen the discrepancy. Thus, lateral movement of water is probably not the main factor for dissipating recharge water.

Water Chemistry

Bedrock

The Dakota Formation is the only bedrock unit in the till research area for which water quality data are available (Iles, 1984). These data are presented in table 6 and show that the water averages about 630 milligrams per liter (mg/l) dissolved solids. The water quality of this aquifer is generally good compared to water from the outwash and till.
Glacial

OUTWASH

Two water samples were taken from the flowing wells completed in the outwash underlying the study area. One well is located approximately 1.5 miles north of site 2 and the other well is located approximately 1 mile south of site 3 (app. G). These wells were chosen for sampling because of their suitability for collecting samples for carbon-14 dating. The average water quality of these two samples is shown in table 6 and individual analyses are presented in appendix G. The stratigraphic correlation shown in figure 7 indicates that water in the buried outwash at the study site correlates to buried outwash in other parts of Lincoln County (Iles, in prep). The water from the outwash has generally higher concentrations of chemical constituents than water from the Dakota Formation and generally less than water from till.

TILL

Water from piezometers at sites 1 and 2 were sampled for chemical analysis (table 6). Water from the weathered till generally has higher concentrations of dissolved constituents than water from the underlying unweathered till, and water from both sources is more mineralized than water from either the Dakota Formation (bedrock aquifer) or the buried outwash (glacial aquifer). A complete listing of the chemical analyses of water from the till is presented in appendix G.

Analyses of water from weathered till for trace metals yielded concentrations ranging from <0.2 to 65 micrograms per liter (µg/L) for selenium and from ≤0.3 to 5.6 µg/L for arsenic. Concentrations in unweathered till ranged from <0.2 to 1.9 µg/L for selenium and from 1.2 to 22 ng/L for arsenic (app. G).

Age of Ground Water

Water from the Dakota Formation (Iles, 1984, data on file at the South Dakota Geological Survey) has been sampled and analyzed for the isotopes of carbon-14, oxygen-18, and deuterium. Water from the outwash and till has been sampled and analyzed for the isotopes of carbon-14, tritium, oxygen-18, and deuterium. Analytical results from the till and outwash are presented in table 7.

Water in the Dakota Formation in the immediate area was found to range between 30,000 and 40,000 years old (Iles, 1984, data on file at the South Dakota Geological Survey). The oxygen-18 and deuterium data from the Dakota Formation indicate that the mean annual air temperature ranged from 3 to 5°C when the water formed as precipitation (Iles, 1984).

Water samples from the outwash were collected from flowing wells. According to the carbon isotope data (table 7), the age of water in the outwash was found to range from 7,269 to 13,543 years old. The result of an analysis for tritium in a water sample from the outwash (table 7) is consistent with the carbon isotope data in that it indicates the outwash water is pre-1953 in age (Freeze and Cherry, 1979, and Fetter, 1988). The oxygen-18 and deuterium data from the outwash (table 7 and
fig. 18) indicate that the mean annual air temperature ranged from about 4½ to 7°C when the water formed as precipitation (Dansgaard, 1964).

Water in the unweathered till was found to range from 9,068 to 22,410 years old (table 7). Analyses for tritium (table 7) in water from the unweathered till indicate that the water is pre-1953 in age (Freeze and Cherry, 1979, and Fetter, 1988). Analyses for the isotopes of oxygen-18 and deuterium (table 7 and fig. 18) indicate that the mean annual temperature ranged from about -2 to 3°C when the water formed as precipitation (Dansgaard, 1964).

Water from weathered till was found to be too young to date using the carbon-14 method. Analysis for tritium (table 7) indicates that the water in the weathered till is post-1953 in age (Freeze and Cherry, 1979, and Fetter, 1988). Oxygen-18 and deuterium data (table 7 and fig. 18) indicate that the mean annual temperature ranged from about 4 to 5°C when the water formed as precipitation (Dansgaard, 1964).

The significant age differences and the distinct isotopic differences regarding oxygen-18 and deuterium in water from unweathered and weathered till support the interpretation that these are distinct hydrologic units which have little interaction of ground water between them. Also, the oxygen-18 and deuterium data for unweathered till and outwash indicate that there is little interaction of water between these units.

SUMMARY AND CONCLUSIONS

It is the intent of this report to present data and make interpretations regarding evaluation and validation of some concepts of ground water movement through till. Work conducted for this report is only part of a larger effort to understand the hydrogeology of till throughout the glaciated eastern half of South Dakota. Thus, all potentially related questions and problems were not addressed.

The following conclusions regarding the Lincoln County research area can be drawn from the preceding discussion and interpretations.

1. Some precipitation water migrates below the root zone into the weathered till.

2. A shallow water table exists in the weathered till at all times during the year.

3. No water migrates downward through the unweathered till.

4. A relatively insignificant amount of water may move upward through unweathered till, although neither the existence of movement nor rate of movement have been determined.

5. A relatively small amount of water may migrate laterally on a local scale through weathered till, however, probably not in sufficient quantity to dissipate all recharge water. Under normal field conditions, lateral movement of water through weathered till cannot account for dissipation of all recharge water.

The only direction for significant dissipation of water from the till appears to be upward. This is consistent with Barati and Hedges (1985) who tentatively concluded that the major portion of ground
water discharge from weathered till is upward movement of water by evaporation through the numerous cracks and fractures present in the upper weathered till. Although the above interpretations and conclusions may be subjected to modification as research continues, the interpretation that upward movement is the dominant mechanism for dissipation of recharge water to the water table in till seems appropriate based on the abundance and nature of supporting evidence gathered to date. Future investigation activities will be concentrated on quantifying the magnitude of lateral movement and the component of upward movement.

REFERENCES CITED

Cowman, T.C., in preparation, Methodology and results of in-situ permeability tests in anoxicized till of South Dakota: South Dakota Geological Survey Open-File Report 3-BAS.
Hovorka, M.J., 1951, Influence of bedrock permeability on ground-water observations: Waterways Experiment Station, Corps of Engineers, U.S. Army, Bull. no. 36, 50 p.

Figure 1. Locations of till research areas in South Dakota.
Figure 2. Location of the study area and till piezometer sites.
Figure 3. Locations of cross sections.
Figure 4. Cross section A-A'.
Figure 5. Cross section B-B'.

Vertical Exaggeration = 52.8

See appendix A for explanation of drill hole locations.
See figure 3 for location of cross section.
INDEX MAP SHOWING LOCATION OF LINCOLN COUNTY IN THE STATE OF SOUTH DAKOTA.

Figure 6. Inferred extent of outwash which underlies sites 1, 2, and 3.
Figure 7. Cross section A-A'–A".

The potentiometric surface of the outwash is from measurements taken on May 15, 1986 (998N-51W-120DDD, 998N-50W-240BBB, 998N-50W-02AAAB).

The potentiometric surface of the Dakota Formation is from measurements taken on October 22, 1986 (999N-50W-02AAAB) and February 19, 1986 (988N-50W-01888B and 988N-50W-160CCC).

See appendix A for explanation of drill hole locations.
See figure 3 for location of cross section.
INDEX MAP SHOWING LOCATION OF LINCOLN COUNTY IN THE STATE OF SOUTH DAKOTA.

Approximate minimum area of "flowing" wells.

Location where "flowing" well has been reported.

Figure 8. Area in which the potentiometric surface of a buried outwash is above land surface.
Figure 9. Till piezometers at site 1.
Figure 10. Till piezometers at site 2.
Figure 11. Till piezometers at site 3.
Figure 12. Hydrograph of till piezometers at site 1.
Figure 13. Hydrograph of till piezometers at site 2.
Figure 14. Hydrograph of till piezometers at site 3.
Figure 15. Topographic map of the study area.
Figure 16. Idealized hydrologic cross section at site 2 assuming a linear water table slope.

- **Site 2**
- **Land surface**
- **Water table**
- **Seepage face**
- **Snake Creek**

Location of cross section is shown on figure 15.

Vertical exaggeration = 40x
Figure 17. Idealized hydrologic cross section at site 2 assuming a nonlinear water table slope.
Figure 18. Oxygen-18 and deuterium values from weathered till, unweathered till, and outwash.
TABLE 1. Mineralogical data from two till samples

<table>
<thead>
<tr>
<th>Mineralogy</th>
<th>62Q-1 weathered till</th>
<th>62Q-2 unweathered till</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay minerals:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smectites(^1)</td>
<td>15-20</td>
<td>10-15</td>
</tr>
<tr>
<td>Illite/micas(^2)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>2- 3</td>
<td>5</td>
</tr>
<tr>
<td>Calcite</td>
<td>10-15</td>
<td>15</td>
</tr>
<tr>
<td>Dolomite</td>
<td>5</td>
<td>5-10</td>
</tr>
<tr>
<td>Quartz</td>
<td>25-30</td>
<td>25-30</td>
</tr>
<tr>
<td>Feldspars</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>Gypsum(^3)</td>
<td>3- 4</td>
<td>2- 3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>1- 2</td>
<td>2- 3</td>
</tr>
<tr>
<td>Iron oxides(^4)</td>
<td>2- 3</td>
<td>Trace</td>
</tr>
<tr>
<td>Chlorite</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Minor(^5)</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1 Trace means less than 1 percent.
2 Chiefly calcium montmorillonite, includes minor amounts of mixed and interlayered varieties.
3 Chiefly illite, includes trace amounts of biotite and muscovite.
4 During oven drying was converted to bassanite (plaster of paris - CaSO\(_4\) x 0.5 H\(_2\)O).
5 Chiefly amorphous iron oxides, includes trace amounts of hematite, magnetite, and ilmenite.

Includes charcoal, calcareous, and siliceous foraminifera, epidote, garnet, apatite, zircon, zoelite, amphiboles (hornblende, actinolite, and occasionally glaucophane), pyroxenes, glaucocite\(^7\), and trace amounts of water-soluble chloride and sulfatic ions, unidentified clay, and clay-size minerals.

Data from U.S. Bureau of Reclamation, Engineering and Research Center, Soil Mechanics Section, Denver, Colorado.

Core samples were taken from a drill hole adjacent to piezometers at site I:
Sample 62Q-1 from 5 to 7.5 feet
Sample 62Q-2 from 25 to 27.5 feet

55
<table>
<thead>
<tr>
<th>Site</th>
<th>Piezometer</th>
<th>Piezometer depth (ft)</th>
<th>Water elevation (ft) 5-19-86</th>
<th>Gradient direction between piezometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open hole</td>
<td>8</td>
<td>1305.93</td>
<td>down</td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1H</td>
<td>13</td>
<td>1307.65</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1P</td>
<td>16</td>
<td>1306.84</td>
<td>down</td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1Q</td>
<td>17</td>
<td>1307.47</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1E</td>
<td>27</td>
<td>1292.45</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1D</td>
<td>28</td>
<td>1305.66</td>
<td>down</td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1C</td>
<td>48</td>
<td>1288.70</td>
<td>up</td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1N</td>
<td>67</td>
<td>>1318.28</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GT-LN-1M</td>
<td>68</td>
<td>>1310.34</td>
<td></td>
</tr>
</tbody>
</table>

1 Depth is presented in feet below land surface.
2 Calculated using average land surface elevation at the site.
3 Piezometer construction included taking of Shelby-tube core through inside of open-ended casing.
4 Does not respond like a water-table well, as do the other wells completed in weathered till at that site.
5 Piezometer construction included use of a well screen.
6 Gradient is across weathered-unweathered till interface.
7 Piezometer construction included use of only open-ended casing as water-intake area.
8 Flowing well.
<table>
<thead>
<tr>
<th>Hydrologic unit</th>
<th>Name</th>
<th>Depth (ft)</th>
<th>Lutin and Kirkham method</th>
<th>Hvorslev method</th>
<th>Average of the two methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weathered till</td>
<td>GT-LN-1F</td>
<td>16</td>
<td>1.5 x 10^4</td>
<td>1.6 x 10^4</td>
<td>1.5 x 10^4</td>
</tr>
<tr>
<td></td>
<td>GT-LN-1I</td>
<td>3</td>
<td>2.2 x 10^4</td>
<td>1.4 x 10^7</td>
<td>1.8 x 10^7</td>
</tr>
<tr>
<td></td>
<td>GT-LN-1J</td>
<td>6</td>
<td>1.9 x 10^7</td>
<td>2.1 x 10^7</td>
<td>2.0 x 10^7</td>
</tr>
<tr>
<td></td>
<td>GT-LN-1K</td>
<td>11</td>
<td>4.1 x 10^7</td>
<td>4.3 x 10^7</td>
<td>4.2 x 10^7</td>
</tr>
<tr>
<td></td>
<td>GT-LN-1L</td>
<td>13</td>
<td>1.5 x 10^7</td>
<td>1.1 x 10^7</td>
<td>1.3 x 10^7</td>
</tr>
<tr>
<td></td>
<td>GT-LN-1M</td>
<td>16</td>
<td>9.7 x 10^7</td>
<td>9.4 x 10^7</td>
<td>9.5 x 10^7</td>
</tr>
<tr>
<td></td>
<td>GT-LN-2A</td>
<td>16</td>
<td>1.7 x 10^6</td>
<td>1.7 x 10^4</td>
<td>1.7 x 10^4</td>
</tr>
<tr>
<td></td>
<td>GT-LN-2H</td>
<td>6</td>
<td>1.7 x 10^4</td>
<td>1.7 x 10^4</td>
<td>1.7 x 10^4</td>
</tr>
<tr>
<td></td>
<td>GT-LN-2I</td>
<td>11</td>
<td>5.4 x 10^7</td>
<td>4.4 x 10^7</td>
<td>4.9 x 10^7</td>
</tr>
<tr>
<td></td>
<td>GT-LN-2J</td>
<td>13</td>
<td>4.1 x 10^7</td>
<td>2.2 x 10^7</td>
<td>3.0 x 10^7</td>
</tr>
<tr>
<td></td>
<td>GT-LN-2K</td>
<td>15</td>
<td>9.8 x 10^4</td>
<td>1.3 x 10^7</td>
<td>1.1 x 10^7</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>...</td>
<td></td>
<td>2.6 x 10^7</td>
<td>5.2 x 10^7</td>
<td>2.5 x 10^7</td>
</tr>
<tr>
<td>Maximum</td>
<td>...</td>
<td></td>
<td>4.1 x 10^7</td>
<td>1.7 x 10^7</td>
<td>4.2 x 10^7</td>
</tr>
<tr>
<td>Minimum</td>
<td>...</td>
<td></td>
<td>1.5 x 10^4</td>
<td>1.6 x 10^4</td>
<td>1.5 x 10^4</td>
</tr>
<tr>
<td>Unweathered till</td>
<td>GT-LN-1C</td>
<td>48</td>
<td>7.1 x 10^5</td>
<td>7.8 x 10^5</td>
<td>7.4 x 10^5</td>
</tr>
<tr>
<td></td>
<td>GT-LN-1D</td>
<td>28</td>
<td>1.5 x 10^6</td>
<td>1.6 x 10^5</td>
<td>1.5 x 10^5</td>
</tr>
<tr>
<td></td>
<td>GT-LN-2C</td>
<td>48</td>
<td>5.6 x 10^5</td>
<td>9.3 x 10^5</td>
<td>8.9 x 10^5</td>
</tr>
<tr>
<td></td>
<td>GT-LN-2E</td>
<td>68</td>
<td>3.7 x 10^5</td>
<td>3.5 x 10^5</td>
<td>4.5 x 10^5</td>
</tr>
<tr>
<td></td>
<td>GT-LN-3B</td>
<td>49</td>
<td>4.5 x 10^6</td>
<td>3.1 x 10^6</td>
<td>3.7 x 10^6</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>...</td>
<td></td>
<td>1.9 x 10^6</td>
<td>1.7 x 10^4</td>
<td>1.8 x 10^4</td>
</tr>
<tr>
<td>Maximum</td>
<td>...</td>
<td></td>
<td>5.7 x 10^6</td>
<td>3.5 x 10^8</td>
<td>4.5 x 10^6</td>
</tr>
<tr>
<td>Minimum</td>
<td>...</td>
<td></td>
<td>7.1 x 10^6</td>
<td>7.8 x 10^4</td>
<td>7.4 x 10^4</td>
</tr>
</tbody>
</table>

1 Values determined using methods described by Larchin and Kirkham (1949) and Hvorslev (1951). Data obtained from Cowman (in prep.).

2 Depth is presented in feet below land surface.
<table>
<thead>
<tr>
<th>One-time rise in water level(^a) (ft)</th>
<th>Specific yield (%)</th>
<th>Volume of water recharging 1-square foot of land (ft(^3))</th>
<th>Volume of water recharging a strip of land 1 foot wide and 1,080 feet long (ft(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.45</td>
<td>1</td>
<td>0.0345</td>
<td>37.26</td>
</tr>
<tr>
<td>3.45</td>
<td>10</td>
<td>0.3450</td>
<td>372.60</td>
</tr>
</tbody>
</table>

\(^a\) Data from well GT-LN-2D; difference in water level between 2-26-86 and 4-16-86.
<table>
<thead>
<tr>
<th>Area (ft²)</th>
<th>Hydraulic conductivity (cm/sec)</th>
<th>Lateral hydraulic gradient (ft/ft)</th>
<th>Discharge (gpd²)</th>
<th>Discharge (cubic feet per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7 x 10⁻³</td>
<td>36.04</td>
<td>0.0085</td>
<td>3.063 x 10⁻¹</td>
</tr>
<tr>
<td>1</td>
<td>1.0 x 10⁻³</td>
<td>21.20</td>
<td>0.0085</td>
<td>1.802 x 10⁻¹</td>
</tr>
<tr>
<td>1</td>
<td>1.0 x 10⁻⁴</td>
<td>2.12</td>
<td>0.0085</td>
<td>1.802 x 10⁻²</td>
</tr>
<tr>
<td>1</td>
<td>1.0 x 10⁻⁴</td>
<td>0.212</td>
<td>0.0085</td>
<td>1.802 x 10⁻³</td>
</tr>
<tr>
<td>1</td>
<td>1.0 x 10⁻⁷</td>
<td>0.0212</td>
<td>0.0085</td>
<td>1.802 x 10⁻⁴</td>
</tr>
<tr>
<td>1</td>
<td>1.5 x 10⁻⁸</td>
<td>0.0032</td>
<td>0.0085</td>
<td>2.70 x 10⁻⁴</td>
</tr>
</tbody>
</table>

1 ft² - square feet
2 cm/sec - centimeters per second
3 gpd/ft² - gallons per day per square foot
4 ft/ft - feet per foot
5 gpd - gallons per day

<table>
<thead>
<tr>
<th>Hydrologic Unit</th>
<th>Number of samples</th>
<th>Conductivity (μhos/cm)</th>
<th>Parameter with concentration in milligrams per liter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DS</td>
<td>Na</td>
</tr>
<tr>
<td>Weathered till</td>
<td>8</td>
<td>5185</td>
<td>5473</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>2580</td>
<td>2240</td>
</tr>
<tr>
<td>Unweathered till</td>
<td>11</td>
<td>3075</td>
<td>2602</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>4830</td>
<td>4390</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>2050</td>
<td>1640</td>
</tr>
<tr>
<td>Outwash</td>
<td>2</td>
<td>2505</td>
<td>1935</td>
</tr>
<tr>
<td>Dakota Formation</td>
<td>23</td>
<td>634</td>
<td>122</td>
</tr>
</tbody>
</table>

1 DS = dissolved solids; Na = sodium; Ca = calcium; Mg = magnesium; K = potassium; SO₄ = sulfate; Cl = chloride; F = fluoride; NO₃⁻ + Cl⁻ = nitrate + chloride; Fe = iron; Mn = manganese; CaCO₃ = hardness as calcium carbonate; Alk-T = total alkalinity; HCO₃⁻ = bicarbonate.
2 Unhos = microhos.
3 Analytical results from 23 samples (iles, in prep.) were used in averaging for the Dakota Formation except for fluoride where only 8 samples were available.

See appendix c for individual analyses from till and outwash.
<table>
<thead>
<tr>
<th>Hydrologic unit¹</th>
<th>Depth (ft)²</th>
<th>Date sampled</th>
<th>Modern Carbon Percent</th>
<th>Modern carbon-13 Error</th>
<th>Carbon-14 age¹</th>
<th>Age³</th>
<th>Lower age⁴</th>
<th>Upper age⁴</th>
<th>Delta oxygen-18 %⁵</th>
<th>Delta delta-tritium %⁶</th>
<th>Tritium date²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weathered till</td>
<td>11 7-16-86</td>
<td>83.9 0.6</td>
<td>-7.4 -5616 -8075 -8557</td>
<td>-10.95 -71.23 64.7 1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-1K</td>
<td>13 7-16-86</td>
<td>--</td>
<td>-10.94 -75.7 51.3 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-1M</td>
<td>16 7-15-86</td>
<td>45.9 0.4</td>
<td>-7.1 -3602 -567 -1526</td>
<td>-9.08 -71.9 15.1 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-2L</td>
<td>11 7-15-86</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-2M</td>
<td>13 7-15-86</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unweathered till</td>
<td>GT-LK-1A⁴</td>
<td>68 7-16-86</td>
<td>9 0.2</td>
<td>-17.5 16669 16687 17055</td>
<td>-13.31 -99.9 0.06</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-1Q</td>
<td>36 7-16-86</td>
<td>15.6 0.7</td>
<td>-58.6 22410 22522 22570</td>
<td>-12.41 -89.1 0.22</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-1P</td>
<td>46 7-16-86</td>
<td>14.2 0.4</td>
<td>-13.1 10798 10568 11034</td>
<td>-13.19 -91.7 0.75</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-1Q</td>
<td>36 7-16-86</td>
<td>15.2 0.3</td>
<td>-14.3 10442 10281 10583</td>
<td>-15.31 -99.6 0.14</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-2L</td>
<td>26 7-16-86</td>
<td>7.8 0.3</td>
<td>-9.2 10942 10693 11199</td>
<td>-11.33 -82.18 1.14</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-2M</td>
<td>46 7-16-86</td>
<td>15.9 0.3</td>
<td>-11.9 9068 8974 9226</td>
<td>-13.55 -97.85 1.99</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT-LK-2R</td>
<td>56 7-16-86</td>
<td>12 0.3</td>
<td>-15.5 13581 13377 13791</td>
<td>-19.06 -101.98 3.06</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outwash</td>
<td>Schoffeln³</td>
<td>90 7-25-84</td>
<td>11.2 0.6</td>
<td>-14.4 13543 13111 13998</td>
<td>9.88 -66.3 --</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweeter⁷</td>
<td>>100 7-15-86</td>
<td>9.5 0.2</td>
<td>-10.9 12602 12429 12773</td>
<td>-10.403 -68.1 0.04</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Suing⁷</td>
<td>70 7-25-84</td>
<td>19.1 0.7</td>
<td>-11.5 7269 6971 7578</td>
<td>-8.8 -59.5 --</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Analyses were performed by the Laboratory of Isotope Geochemistry, Department of Geosciences, University of Arizona, Tucson, Arizona.
² Analyses were performed by the Tritium Laboratory, University of Miami, Miami, Florida.
³ The hydrologic units occur in the following descending stratigraphic order: weathered till, unweathered till, and outwash.
⁴ Depth is presented in feet below land surface.
⁵ Age is presented in years before present. The lower and upper ages are based on the error factor in the percent-modern carbon.
⁶ The borate core in well GT-LK-1A showed the presence of "muck siltier sediment than the rest of the unweathered till above it.
⁷ The locations for the Schoffeln, Sweeter, and Suing wells are as follows: Schoffeln ------- NEWARKIANA sec. 20, T. 99 N., R. 50 W. Sweeter ------------------ MYANNABEESE sec. 20, T. 99 N., R. 50 W. N. Suing -------------- SASKWANUSKA sec. 33, T. 95 N., R. 50 W.
APPENDIX A

Logs of piezometers completed in till

Logs are arranged in order according to identifier under OTHER WELL NAME. The order is:
GT-LN-1A...GT-LN-1Q; GT-LN-2A...GT-LN-2O; GT-LN-3A...GT-LN-3F. This identifier should be used to correlate with terminology used in text, figures, and tables.

LOCATION

Included are the township number, the range number, the section number, and the quarter section identifiers: NE = A; NW = B; SW = C; SE = D. A comparison of LEGAL LOCATION and LOCATION is as follows. A LEGAL LOCATION of NW1/4SE1/4SW1/4 sec. 30, T. 59 N., R. 64 W. is the same as a LOCATION of 69/N-64W-30CABD. In several LOCATIONS, the smallest quarter section is followed by the number 1 or 2 which indicates that more than one log may exist for that particular location.

LATITUDE AND LONGITUDE

The format is DD.MMSS where D is degrees, M is minutes, and S is seconds.

DRILLING COMPANY

SDGS is an abbreviation for South Dakota Geological Survey.

TOTAL DRILL HOLE DEPTH, SCREEN LENGTH AND CASING STICK-UP

The numbers are presented in feet.

SCREEN TYPE AND CASING TYPE

PVC – polyvinyl chloride; MFG. – manufactured; SCH. – abbreviation for schedule and refers to casing thickness.

CASING TOP ELEVATION AND GROUND SURFACE ELEVATION

The numbers are presented in feet above mean sea level. I - the elevation was determined using a surveying instrument. T - the elevation was estimated from a 7½-minute series topographic map.

CASING DIAMETER

The numbers are presented in inches.

AQUIFER

Till is listed here as an aquifer solely to satisfy the South Dakota Geological Survey database searching routines. It is not intended to define till as an aquifer.
County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738
Land Owner: Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: S. MITCHELL Geologist: M. JARRETT
Date Drilled: 08-22-1984
Ground Surface Elevation: 1308.35 I
Total Drill Hole Depth: 67
Water Rights Well: Other Well Name: GT-LN-1A Basin: VERMILLION
Management Unit: Screen Type: PVC Casing Type: PVC
Casing Top Elevation: 1310.34 I Casing Stick-up: 1.99
Well Maintenance Date: USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Single Point Resistivity: Extra:
Samples: Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.
0 - 4 Silt, light-yellow-brown, clayey; very moist, oxidized
4 - 19 Clay, light-brown, silty, sandy, pebbly, oxidized (till)
19 - 67 Clay, gray, silty, sandy, pebbly, very silty near bottom; unoxidized (till)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738
Land Owner: Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: T. THOMAS Geologist: M. JARRETT
Date Drilled: 08-22-1984
Ground Surface Elevation: 1308.42 I
Total Drill Hole Depth: 67
Water Rights Well: Other Well Name: GT-LN-1B Basin: VERMILLION
Management Unit: Screen Type: PVC Casing Type: PVC
Casing Top Elevation: 1310.28 I Casing Stick-up: 1.86
Well Maintenance Date: USGS Hydrological Unit Code: 10170102
Location: 098N-50W-20/20AAA 1
Longitude: 96.4602
Driller's Log: X Geologist's Log: Drilling Method: AUGER
Test Hole Number: A1-84-270 SDGS Well Name: A1-84-270
Aquifer: TILL Screen Length: Casing Diameter: 2.0
Total Casing and Screen:
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:
 0 - 1 Clay, black, silty, sandy (topsoil)
 1 - 18 Clay, light-yellow-brown, silty, sandy, pebbly; oxidized (till)
 18 - 67 Clay, gray, silty, sandy, pebbly; unoxidized, last 13 feet progressively siltier (till)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: S. MITCHELL
Geologist: M. JARRETT
Date Drilled: 08-23-1984
Ground Surface Elevation: 1308.40 I
Total Drill Hole Depth: 47
Water Rights Well:
Other Well Name: OT-LN-1C
Basin: VERMILLION
Management Unit:
Screen Type:
Casing Type: PVC
Casing Top Elevation: 1310.28 I
Casing Stick-up: 1.88
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:
 Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube. Drilled hard at 40 feet.
 0 - 19 Clay, light-yellow-brown, silty, sandy, pebbly; moist, oxidized (till)
 19 - 47 Clay, gray, silty, sandy, pebbly; unoxidized (till)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. THOMAS
Geologist: M. JARRETT
Date Drilled: 08-23-1984
Ground Surface Elevation: 1308.23 I
Total Drill Hole Depth: 27
Water Rights Well:

Single Point Resistivity:
Extra:
Location: 098N-50W-20DAAA 3
Longitude: 96.4602
Driller's Log: X
Geologist's Log:
Drilling Method: AUGER
Test Hole Number: A1-84-272
SDGS Well Name: A1-84-272
Aquifer: TILL
Screen Length:
Casing Diameter: 2.0
Total Casing and Screen:
Location: 098N-50W-20DAAA 4
Longitude: 96.4602
Driller's Log: X
Geologist's Log:
Drilling Method: AUGER
Test Hole Number: A1-84-273
SDGS Well Name: A1-84-273
Other Well Name: GT-LN-1D
Basin: VERMILLION
Management Unit: Aquifer: TILL
Screen Type: Screen Length:
Casing Type: PVC Casing Diameter: 2.0
Casing Top Elevation: 1310.38 ft
Casing Stick-up: 2.15
Well Maintenance Date: Total Casing and Screen:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:
Samples:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

0 - 19 Clay, light-yelow-brown, silty, sandy, pebbly, oxidized (till)
19 - 27 Clay, gray, silty, sandy, pebbly, unoxidized (till)

County: LINCOLN
Location: 098N-50W-20DAAA 5
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738
Longitude: 96.4602
Land Owner:

Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: S. MITCHELL
Geologist: M. JARRETT
Date Drilled: 08-23-1984
Ground Surface Elevation: 1308.22 ft
Total Drill Hole Depth: 27
Water Rights Well: SDGS Well Name: A1-84-274
Other Well Name: GT-LN-1E
Basin: VERMILLION
Aquifer: TILL
Management Unit:
Screen Type: Screen Length:
Casing Type: PVC Casing Diameter: 2.0
Casing Top Elevation: 1310.37 ft
Casing Stick-up: 2.15
Well Maintenance Date: Total Casing and Screen:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:
Samples:

0 - 19 Clay, light-yellow-brown, silty, sandy, pebbly, oxidized (till)
19 - 27 Clay, gray, silty, sandy, pebbly, unoxidized (till)

County: LINCOLN
Location: 098N-50W-20DAAA 6
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738
Longitude: 96.4602
Land Owner:
Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

0 - 15 Clay, light-yellow-brown, silty, sandy, pebbly; oxidized (till)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738
Longitude: 96.4602
Location: 098N-50W-20DAAA 7

Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: S. MITCHELL
Geologist: M. JARRETT
Date Drilled: 08-23-1984
Ground Surface Elevation: 1308.29 I
Total Drill Hole Depth: 17
Test Hole Number: A1-84-276
SDGS Well Name: A1-84-276

Water Rights Well:
Other Well Name: GT-LN-1G
Basin: VERMILLION
Management Unit:
Screen Type: PVC, MFG.
Casing Type: PVC
Casing Top Elevation: 1310.21 I
Casing Stick-up: 1.92
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

0 - 17 Clay, light-yellow-brown, silty, sandy, pebbly; oxidized (till)
County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 42.1738

Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: M. JARRETT
Geologist: M. JARRETT
Date Drilled: 10-09-1984
Ground Surface Elevation: 1308.31
Total Drill Hole Depth: 12
Water Rights Well: No
Other Well Name: GT-LN-1H
Basin: VERMILLION
Management Unit:
Screen Type: PVC
Casing Type: PVC
Casing Top Elevation: 1310.03
Casing Stick-up: 1.72
Well Maintenance Date: 10/17/1984
USGS Hydrological Unit Code: 10170102

Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

Location: 098N-50W-20DAAAA 8
Longitude: 96.4602

Driller's Log:
Geologist's Log: X
Drilling Method: AUGER

Test Hole Number: A1-84-282
SDGS Well Name: A1-84-282
Aquifer: TILL
Screen Length:
Casing Diameter: 2.0
Total Casing and Screen:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

0 - 12 Clay, brown, silty, pebbly (till)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 43.1737

Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: K. WUNDER
Geologist: T. COWMAN
Date Drilled: 05-20-1986
Ground Surface Elevation: 1308.00
Total Drill Hole Depth: 2
Water Rights Well: No
Other Well Name: GT-LN-1H
Basin: VERMILLION
Management Unit:
Screen Type:
Casing Type: PVC, SCH. 80
Casing Top Elevation:
Casing Stick-up: 2.40
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:

Location: 098N-50W-20DAAAA19
Longitude: 96.4601

Driller's Log: X
Geologist's Log:
Drilling Method: AUGER

Test Hole Number: A1-86-13
SDGS Well Name: A1-86-13
Aquifer:
Screen Length:
Casing Diameter: 2.0
Total Casing and Screen: 4.4

Single Point Resistivity:
Natural Gamma:

Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

0 - 2 Clay, blackish-brown, silty, sandy, pebbly, oxidized, moist (tilt)

County: LINCOLN
Legal Location: NE NE NE sec. 20, T. 098 N., R. 50 W.
Latitude: 43.1737
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: K. WUNDER
Geologist: T. COWMAN
Date Drilled: 05-19-1986
Ground Surface Elevation: 1308.00 T
Top Drill Hole Depth: 5
Water Rights Well: No
Other Well Name: GT-LN-1J
Basin: VERMILLION
Aquifer:
Management Unit:
Screen Type: Screen Length:
Casing Type: PVC, SCH. 80 Casing Diameter: 2.0
Casing Top Elevation:
Casing Stick-up: 1.60 Total Casing and Screen: 6.6
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102 Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

0 - 4 Clay, blackish-brown, silty, sandy, pebbly, oxidized, moist (tilt)
4 - 5 Clay, tan-brown, silty, sandy, pebbly, oxidized, moist (tilt)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 43.1737
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-19-1986
Ground Surface Elevation: 1308.00 T
Total Drill Hole Depth: 10
Water Rights Well: No
Other Well Name: oT-LN-1K

Location: 098N-50W-20DAAA14
Longitude: 90.4601
Driller's Log: X
Geologist's Log:
Drilling Method: AUGER
Test Hole Number: A1-86-12
SDGS Well Name: A1-86-12
Screen Length:
Casing Diameter: 2.0
Total Casing and Screen: 6.6
Single Point Resistivity:
Extra:

to U

48
Basin: VERMILLION
Management Unit:
Screen Type: Screen Length:
Casing Type: PVC, SCH. 80 Casing Diameter: 2.0
Casing Top Elevation: Total Casing and Screen: 12.4
Casing Stick-up: 2.40
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:
Samples:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topsoil</td>
</tr>
<tr>
<td>2</td>
<td>Clay, yellow-brown, silty, sandy, pebbly; oxidized, moist (till)</td>
</tr>
</tbody>
</table>

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 998 N., R. 50 W.
Latitude: 43.1737
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-19-1986
Grund Surface Elevation: 1308.00 T
Total Drill Hole Depth: 12
Water Rights Well:
Other Well Name: GT-LN-1L
Basin VERMILLION
Aquifer:
Management Unit:
Screen Type: Screen Length:
Casing Type: PVC, SCH. 80 Casing Diameter: 2.0
Casing Top Elevation: Total Casing and Screen: 13.5
Casing Stick-up: 1.50
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topsoil</td>
</tr>
<tr>
<td>2</td>
<td>Clay, yellow-brown, silty, sandy, pebbly; oxidized, moist (till)</td>
</tr>
</tbody>
</table>

County: LINCOLN
Location: 998N-50W-20DAAA13
Legal Location: NE NE NE SE sec. 20, T. 998 N., R. 50 W.
Location: 998N-50W-20DAAA13
A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>Clay, blackish-brown, silty, sandy, pebbly, oxidized, moist (till)</td>
</tr>
<tr>
<td>5 - 14</td>
<td>Clay, tan-brown, silty, sandy, pebbly, oxidized, moist (till)</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Clay, dark-brown, silty, sandy, pebbly, partially oxidized, moist (till)</td>
</tr>
</tbody>
</table>

County: LINCOLN
Legal Location: NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 43.1737
Longitude: 96.4601

Location: 0881-50W-20DDAA12
Longitude: 96.4601
A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well.
This acts as a natural intake.

0 - 5 Clay, blackish-brown, silty, sandy, pebbly; oxidized, moist (til)
5 - 14 Clay, tan-brown, silty, sandy, very pebbly; oxidized, moist (til)
14 - 20 Clay, dark-brown, silty, sandy, pebbly; oxidized, moist (til)
20 - 25 Clay, gray, silty, sandy, pebbly; unoxidized, moist (til)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 099 N., R. 50 W.
Latitude: 43.1373
Longitude: 96.4001

Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN

Date Drilled: 05-19-1986
Ground Surface Elevation: 1308.00 T
Total Drill Hole Depth: 35
Water Rights Well:
Other Well Name: 07-LN-10
Basin: VERMILLION
Management Unit:
Screen Type:
Casing Type: PVC, SCH. 80
Casing Top Elevation:
Casing Stick-up: 1.30
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well.
This acts as a natural intake.

0 - 2 Topsoil
2 - 15 Clay, brown-yellow, silty, sandy, pebbly; oxidized, moist (til)
15 - 20 Clay, dark-brown, silty, sandy, pebbly; partially oxidized, moist (til)
20 - 35 Clay, gray, silty, sandy, pebbly; unoxidized, moist (til)

County: LINCOLN
Legal Location: NE NE NE SE sec. 20, T. 098 N., R. 50 W.
Latitude: 43.1373
Longitude: 96.4601

Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN

Location: 098N-50W-20DAAA15
Longitude: 96.4601
Date Drilled: 05-19-1986
Drilling Method: AUGER

Ground Surface Elevation: 1308.00 T
Test Hole Number: A2-86-16
Total Drill Hole Depth: 45
SDGS Well Name: A2-86-1P

Water Rights Well: Basin: VERMILLION
Aquifer: Screen:
Management Unit: Screen Type: PVC, SCH. 80
Casing Type: Casing Top Elevation: 2.40
Casing Stick-up: 2.40
Well Maintenance Date: USGS Hydrological, Unit Code: 10170102
Electric Log Information: Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:

Samples:
A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

0 - 2 Topsoil
2 - 14 Clay, brown, silty, sandy, pebbly, oxidized, moist (till)
14 - 45 Clay, gray, silty, sandy, pebbly, unoxidized, moist (till)

County: LINCOLN
Location: 09hN-50W-20/DAAA11
Legal Location: NE NE SE sec. 20, T. 098 N., R. 50 W.
Longitude: 96.4601
Latitude: 43.1737
Land Owner: GLACIAL TILL RESEARCH

Driller: K. WUNDER
Driller's Log: X
Geologist: T. COWMAN
Geologist's Log:
Date Drilled: 05-19-1986
Drilling Method: AUGER

Ground Surface Elevation: 1308.00 T
Test Hole Number: A1-86-9
Total Drill Hole Depth: 55
SDGS Well Name: A1-86-9

Water Rights Well: Basin: VERMILLION
Aquifer:
Management Unit:
Casing Type: PVC, SCH. 80
Casing Type: Casing Top Elevation:
Casing Stick-up:
Well Maintenance Date: USGS Hydrological, Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:

Samples:
A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.
County: LINCOLN
Legal Location: SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648

Land Owner: LOCATION
Project: GLACIAL TILL RESEARCH
Drillers Company: SDGS
Driller: S. MITCHELL
Geologist: M. JARRETT
Date Drilled: 08-26-1984
Ground Surface Elevation: 1305.37
Total Drill Hole Depth: 15
Water Rights Well: Other Well Name: GT-LN-2A
Basin: VERMILLION
Management Unit: SCREEN LENGTH
Screen Type: PVC
Casing Type: PVC
Casing Top Elevation: 1307.60
Casing Height: 2.25
Well Maintenance Date: 0170102
USGS Hydrological Unit Code: Electric Log Information:
Spontaneous Potential: Single Point Resistivity: Extra:
Natural Gas: Samples:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter shelly tube.

Clay, black, silty, sandy (topsoil)
Clay, light-yellow-brown, silty, sandy, pebbly, oxidized (till)

County: LINCOLN
Legal Location: SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648

Land Owner: LOCATION
Project: GLACIAL TILL RESEARCH
Drillers Company: SDGS
Driller: L. THOMAS
Geologist: M. JARRETT
Dose Drilled: 08-26-1984
Ground Surface Elevation: 1306.06
Total Drill Hole Depth: 27
Water Rights Well: Other Well Name: GT-LN-2B
Basin: VERMILLION
Management Unit:

Location: 098N-50W-30ADD 2
Longitude: 96.4713
Driller's Log: X
Geologist's Log: AUGER
Drilling Method: AUGER
Test Hole Number: A1-84-280
SDGS Well Name: A1-84-280
Aquifer: TILL
Extra:

Clay, blackish-brown, silty, sandy, pebbly, oxidized, moist (till)
Clay, tan-brown, silty, sandy, pebbly; oxidized, moist (till)
Clay, gray, silty, sandy, pebbly; unoxidized, moist (till)
Clay, gray, silty, slightly sandy, slightly pebbly, unoxidized, moist (till)
Screen Type: PVC
Casting Type: PVC
Casting Top Elevation: 1307.51
Casing Stick-up: 1.45
Well Maintenance Date: 10/17/012
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:
0 - 1 Clay, black, silty, sandy (topsoil)
1 - 19 Clay, light-yellow-brown, silty, sandy, pebbly, oxidized (till)
19 - 27 Clay, gray, silty, sandy, pebbly, unoxidized (till)

County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43°16'48"
Land Owner: Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: S. MITCHELL
Geologist: M. JARRETT
Date Drilled: 08-28-1984
Ground Surface Elevation: 1306.19
Total Drill Hole Depth: 47
Water Rights Well: SDGS Well Name: GT-LN-2C
Basin: VERMILLION
Aquifer: TILL
Management Unit:
Screen Type: PVC
Casting Type: PVC
Casting Top Elevation: 1307.60
Casing Stick-up: 1.41
Well Maintenance Date: 10/17/012
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.
0 - 1 Clay, black, silty, sandy (topsoil)
1 - 19 Clay, light-yellow-brown, silty, sandy, pebbly, oxidized (till)
19 - 47 Clay, gray, silty, sandy, pebbly, unoxidized (till)

County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43°16'48"
Land Owner: Project: GLACIAL TILL RESEARCH
Location: 098N-50W-30ADD 3
Longitude: 96°47'13"
Screen Length: 2.0
Casing Diameter: 2.0
Total Casing and Screen: 2.0
Single Point Resistivity: Extra
Drilling Company: SDGS
Driller: S. MITCHELL
Geologist: M. JARRETT
Date Drilled: 08-27-1984
Ground Surface Elevation: 1306.32 I
Total Drill Hole Depth: 15
Water Rights Well:
Other Well Name: GT-LN-2D
Basin: VERMILLION
Management Unit:
Screen Type: PVC, MFG.
Casing Type: PVC
Casing Top Elevation: 1307.88 I
Casing Stick-up: 1.56
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Clay, black, silty, sandy (topsoil)</td>
</tr>
<tr>
<td>1 - 15</td>
<td>Clay, light-yellow-brown, silty, sandy, pebbly; oxidized (till)</td>
</tr>
</tbody>
</table>

County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 98 N., R. 50 W.
Latitude: 43.1648
Longitude: 96.4713
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: W. THOMAS
Geologist: M. JARRETT
Date Drilled: 08-27-1984
Ground Surface Elevation: 1306.43 I
Total Drill Hole Depth: 67
Water Rights Well:
Other Well Name: GT-LN-2E
Basin: VERMILLION
Management Unit:
Screen Type: PVC
Casing Type: PVC
Casing Top Elevation: 1307.96 I
Casing Stick-up: 1.53
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Clay, black, silty, sandy (topsoil)</td>
</tr>
</tbody>
</table>
County: LINCOLN
Legal Location: SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1644
Location: 098N-50W-30ADD15
Longitude: 96.4713

Land Owner:
Project: GLACIAL TILL RESEARCH
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-28-1986
Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 2
Water Rights Well: SDGS Well Name: A2-86-26
Other Well Name: OT-LN-2G
Basin: VERMILLION
Management Unit:
Screen Type: PVC, SCH. 80
Casing Type: PVC, SCL. 80
Casing Top Elevation: 1.17
Casing Stick-up: 1.17
Total Casing and Screen: 2.0

Test Hole Number: A1-84-287
SDGS Well Name: A1-84-287

Screen Length: 2.0
Casing Diameter: 2.0
Total Casing and Screen: 4.5

Wol intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

County: LINCOLN
Legal Location: SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1644
Location: 098N-50W-30ADD15
Longitude: 96.4713

Land Owner:
Project: GLACIAL TILL RESEARCH
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-28-1986
Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 2
Water Rights Well: SDGS Well Name: A2-86-26
Other Well Name: OT-LN-2G
Basin: VERMILLION
Management Unit:
Screen Type: PVC, SCH. 80
Casing Type: PVC, SCL. 80
Casing Top Elevation: 1.17
Casing Stick-up: 1.17
Total Casing and Screen: 2.0

Test Hole Number: A1-84-287
SDGS Well Name: A1-84-287

Screen Length: 2.0
Casing Diameter: 2.0
Total Casing and Screen: 4.5

Wol intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.
A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

0 - 2 Topsoil

County: LINCOLN
Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648
Longitude: 96.4713

Land Owner: Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-20-1986

Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 5

Water Rights Well:
Other Well Name: GT-LN-2P
Bassin: VERMILLION
Aquifer:
Management Unit:
Screen Type:
Casing Type: PVC, SCH. 80
Casing Top Elevation: 7.50
Casing Stick-up: 2.50

Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma: Extra
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

0 - 3 Topsoil
3 - 5 Clay, yellow-brown, silty, sandy, pebbly, oxidized, moist (ill)

County: LINCOLN
Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648
Longitude: 96.4713

Land Owner: Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-20-1986

Test Hole Number: A2-86-25
SDGS Well Name: A2-86-25
Screen Length:
Casing Diameter: 2.0
Total Casing and Screen:

Single Point Resistivity: Extra
Ground Surface Elevation: 1306.00 T
Test Hole Number: A2-86-22
Total Drill Hole Depth: 10
SDGS Well Name: A2-86-22
Water Rights Well: aquifer:
Other Well Name: GT-LN-2I
Casing Type: PVC, SCH. 80
Casing Top Elevation: Screen Length:
Casing Stick-up: 2.30
Well Maintenance Date: Total Casing and Screen: 12.3
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

0 - 2 Topsoil
2 - 10 Clay, yellow-brown, silty, very sandy, pebbly; oxidized, moist, saturated at 10 feet (till)

County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-20-1986
Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 12
Water Rights Well: SDGS Well Name: A2-86-21
Other Well Name: GT-LN-2I
Basin: VERMILLION
Management Unit:
Screen Type:
Casing Type: PVC, SCH. 80
Casing Top Elevation: Casing Diameter: 2.0
Casing Stick-up: 2.30
Well Maintenance Date: Total Casing and Screen: 14.3
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well. This acts as a natural intake.

0 - 2 Topsoil
2 - 12 Clay, yellow-brown, silty, sandy, pebbly; oxidized, moist, saturated at 11 feet (till)
County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648
Location: 098N-50W-30ADDD 9
Longitude: 96.4713
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-20-1986
Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 15
Other Well Name: GT-LN-2K
Well Maintenance Date:
Electric Drilling Information:
Screen Type:
Casing Type: PVC, SCH. 80
Casing Top Elevation:
Casing Stick-up: 2.60
Well Completion Date:
USGS Hydrological Unit Code: 10170102
Electric Gamma Information:
Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:
Samples:

A 1 1/2-inch Shelby tube core was attempted from the bottom of the well. No core was returned. A less than 6-inch open hole is presumed. This could act as a natural intake.

0 - 4 Topsoil
4 - 15 Clay, yellow-brown, very silty, very sandy, pebbly; oxidized, moist, saturated at 11 feet

County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648
Location: 098N-50W-30ADDD13
Longitude: 96.4713
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: L. SCHULZ
Geologist: T. COWMAN
Geologist's Log:
Drilling Method: AUGER
Date Drilled: 05-20-1986
Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 25
Water Rights Well:
Other Well Name: GT-LN-2L
Basin: VERMILLION
Well Maintenance Date:
Management Unit:
Screen Type:
Casing Type: PVC, SCH. 80
Casing Top Elevation:
Casing Stick-up: 1.40
Total Casing and Screen: 25.4
USGS Hydrological Unit Code: 10170102

Electric Log Information:
Spontaneous Potential: Extra
Natural Gamma: Extra
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well.
This acts as a natural intake.

0 - 3 Topsoil
3 - 21 Clay, yellow-brown, silty, very sandy, pebbly, oxidized, moist, saturated 9 to 11 feet (till)
21 - 25 Clay, gray, silty, sandy, pebbly, unoxidized, moist (till)

County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648
Longitude: 96.4713
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS

Driller: L. SCHULZ
Geologist: T. COWMAN
Date Drilled: 05-20-1986
Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 35
Water Rights Well: SDGS Well Name: A2-86-23
Other Well Name: OT-LN-2M
Basin: VERMILLION
Management Unit:
Screen Type: Aquifer:
Casing Type: PVC, SCH. 80
Casing Top Elevation: 2.50
Casing Stick-up: 2.50
Well Maintenance Date: Total Casing and Screen: 37.5
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Extra
Natural Gamma: Extra
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well.
This acts as a natural intake.

0 - 3 Topsoil
3 - 21 Clay, yellow-brown, silty, very sandy, pebbly, oxidized, moist, saturated 9 to 11 feet (till)
21 - 35 Clay, gray, silty, sandy, pebbly, unoxidized, moist (till)

County: LINCOLN
Location: 098N-50W-30ADDD8
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Latitude: 43.1648
Longitude: 96.4713
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS

60
Driller: K. WUNDER
Geologist: T. COWMAN

Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 45
Water Rights Well: GT-LN-2N
Basin: VERMILLION
Management Unit: Aquifer:
Screen Type: PVC, SCH. 80
Casing Type: 1.50
Well Maintenance Date: USGS Hydrological Unit Code: 10170102
Casing Stick-up: 1.90
Total Casing and Screen: 46.9

Electric Log Information:
N spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well.
This acts as a natural intake.

0 - 3 Clay, black, silty, sandy, organic, oxidized, moist (topsoil)
3 - 7 Clay, tan-brown, silty, sandy, pebbly; oxidized, moist (tilt)
7 - 9 Clay, tan-brown, silty, very sandy; oxidized, saturated (tilt)
9 - 14 Clay, dark-brown, silty, sandy, pebbly; oxidized, very moist (tilt)
14 - 24 Clay, tan-brown, silty, very sandy, slightly pebbly; oxidized very moist (tilt)
24 - 45 Clay, brownish-gray, very silty, very sandy; oxidized, very moist to saturated (tilt)

County: LINCOLN
Legal Location: SE SE SE NE sec. 30, T. 098 N., R. 50 W.
Location: 098N-50W-30/ADDD 7
Latitude: 43.1648
Longitude: 96.4713

Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: K. WUNDER
Geologist: T. COWMAN
Date Drilled: 05-20-1966
Ground Surface Elevation: 1306.00 T
Total Drill Hole Depth: 55
Water Rights Well: GT-LN-2N
Basin: VERMILLION
Management Unit: Aquifer:
Screen Type: PVC, SCH. 80
Casing Type: 1.50
Well Maintenance Date: USGS Hydrological Unit Code: 10170102
Casing Stick-up: 1.90
Total Casing and Screen: 46.9

Electric Log Information:
Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:

61
Samples:

A 1 foot length of 1 1/2-inch Shelby tube core was removed from the bottom of the well.
This acts as a natural intake.

0 - 3 Clay, blackish-brown, silty, sandy, pebbly; oxidized, moist (tilt)
3 - 16 Clay, tan-brown, silty, very sandy, pebbly; oxidized, moist (tilt)
16 - 19 Clay, tan-brown, very silty, sandy, slightly pebbly; oxidized, very moist (tilt)
19 - 25 Clay, tan-brown, very silty, very sandy; oxidized, saturated (tilt)
25 - 34 Clay, brownish-gray, silty, sandy, pebbly; unoxidized, very moist (tilt)
34 - 40 Clay, greenish-gray, silty, sandy, pebbly; unoxidized, very moist (tilt)
40 - 45 Clay, greenish-gray, very silty, very sandy; unoxidized, saturated
45 - 48 Clay, greenish-gray, silty, sandy, pebbly; unoxidized, very moist (tilt)
48 - 55 Clay, greenish-gray, very silty, slightly sandy; unoxidized, saturated (tilt)

County: LINCOLN
Legal Location: SE SW SE sec. 29, T. 098 N., R. 50 W.
Latitude: 43.1620
Land Owner: Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: M. YESKE
Geologist: M. JARRETT
Date Drilled: 12-11-1984
Ground Surface Elevation: 1318.16 ft
Total Drill Hole Depth: 67 ft
Water Rights Well: OT-LN-3A
Well Name: JAMES
Aquifer: TILL
Management Unit:
Screen Type: Screen Length:
Casing Type: PVC
Casing Top Elevation: 1320.22 ft
Casing Stick-up: 2.0
Total Casing and Screen:
Well Maintenance Date: USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Single Point Resistivity:
Natural Gamma: Extra:
Samples:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

0 - 2 Topsoil, brown, silty, clayey
2 - 19 Clay, yellow-brown, pebbly, silty, slightly sandy; oxidized (tilt)
19 - 28 Clay, brown, silty, slightly sandy, slightly pebbly; oxidized (tilt)
28 - 67 Clay, gray, very silty, slightly sandy, slightly pebbly; unoxidized, core sample at bottom of hole was very silty (tilt)

County: LINCOLN
Legal Location: SE SW SE sec. 29, T. 094 N., R. 50 W.
Latitude: 43.1620
Location: 098N-50W-29DDC 1
Longitude: 96.4610
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: M. JARRETT
Geologist: M. JARRETT
Date Drilled: 10-11-1984
Ground Surface Elevation: 1317.94
Total Drill Hole Depth: 48
Water Rights Well: None
Other Well Name: GT-LN-3B
Basin: VERMILLION
Management Unit: Screen Type: PVC
Casing Type: PVC
Casing Top Elevation: 1320.17
Casing Stick-up: 2.25
Well Maintenance Date: USGS Hydrological Unit Code: 10170102
Electric Log Information: Spontaneous Potential: Single Point Resistivity: Extra:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter sheby tube.

0 - 2 Clay, whitish-yellow, pebbly (topsoil)
2 - 23 Clay, light-brown, silty, slightly pebbly, slightly sandy (till)
23 - 48 Clay, gray, silty, slightly pebbly, sandy (till)

County: LINCOLN
Legal Location: SE SW SE sec. 29, T. 098 N., R. 50 W.
Latitude: 43.1620
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: M. JARRETT
Geologist: M. JARRETT
Date Drilled: 10-11-1984
Ground Surface Elevation: 1317.99
Total Drill Hole Depth: 14
Water Rights Well: None
Other Well Name: GT-LN-3C
Basin: VERMILLION
Management Unit: Screen Type: PVC
Casing Type: PVC
Casing Top Elevation: 1320.48
Casing Stick-up: 2.69
Well Maintenance Date: USGS Hydrological Unit Code: 10170102
Electric Log Information: Spontaneous Potential: Single Point Resistivity: Extra:

Location: 098N-50W-29DDCD 3
Longitude: 96.4610
Driller's Log:
Geologist's Log: X
Drilling Method: AUGER
Test Hole Number: A1-84-283
SDGS Well Name: A1-84-283
Aquifer: TILL
Screen Length: Total Casing and Screen: 2.0
Casing Diameter: 2.0
Total Casing and Screen:
Samples:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

0 - 2 Clay, whitish-yellow, pebbly (topsoil)
2 - 14 Clay, yellow-brown, silty, slightly sandy, slightly pebbly (till)

County: LINCOLN
Legal Location: SE SW SE sec. 29, T. 098 N., R. 50 W.
Latitude: 43.1620
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: M. JARRETT
Geologist: M. JARRETT
Date Drilled: 10-11-1984
Ground Surface Elevation: 1317.75
Total Drill Hole Depth: 8
Well Rights Well:
Other Well Name: GT-LN-3D
Basin: VERMILLION
Management Unit:
Screen Type:
Casing Type: PVC
Casing Top Elevation: 1319.04
Casing Size: 1.29
Well Maintenance Date:
USGS Hydrological Unit Code: 1017012
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:
Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

0 - 2 Clay, whitish-yellow, very silty, pebbly (topsoil)
2 - 8 Clay, yellow-brown, very silty, slightly sandy, slightly pebbly; oxidized (till)

County: LINCOLN
Legal Location: SE SW SE sec. 29, T. 098 N., R. 50 W.
Latitude: 43.1620
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: M. JARRETT
Geologist: M. JARRETT
Date Drilled: 10-11-1984
Ground Surface Elevation: 1317.84
Total Drill Hole Depth: 28
Water Rights Well:
Other Well Name: GT-LN-3D
Location: 098N-50W-29/DDC 4
Longitude: 96.4610
Driller's Log:
Geologist's Log: X
Drilling Method: AUGER
Test Hole Number: A1-84-285
SDGS Well Name: A1-84-285
Aquifer: TILL
Screen Length:
Casing Diameter: 2.0
Total Casing and Screen:
Single Point Resistivity:
Extra:
Location: 098N-50W-29/DDC 5
Longitude: 96.4610
Driller's Log:
Geologist's Log: X
Drilling Method: AUGER
Test Hole Number: A1-84-286
SDGS Well Name: A1-84-286
Basin: VERMILLION
Management Unit: Screen Type:
Casing Type: PVC
Casing Top Elevation: 1319.31 I
Casing Stick-up: 1.47
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

Aquifer: TILL
Screen Length:
Casing Diameter: 2.0
Total Casing and Screen:
Single Point Resistivity:
Extra:

Well intake was constructed by taking a 12-inch long core at bottom of well using a 1.5-inch diameter Shelby tube.

0 - 2 Clay, whitish-yellow, pebbly, moist (topsoil)
2 - 18 Clay, yellow-brown to whitish-yellow, very silty, slightly sandy; few pebbles (till)
18 - 23 Clay, brown, sandy, very silty; few pebbles (till)
23 - 28 Clay, brownish-gray, sandy, silty; few pebbles; unoxidized (till)

County: LINCOLN
Legal Location: SE SW SE sec. 29, T. 098 N., R. 50 W.
Latitude: 43.1620
Land Owner:
Project: GLACIAL TILL RESEARCH
Drilling Company: SDGS
Driller: D. IVERSON
Geologist: S. CRAVENS/A. BARARI
Date Drilled: 10-16-1984
Ground Surface Elevation: 1318.04 I
Total Drill Hole Depth: 70
Water Rights Well:
Other Well Name: OT-LN-3F
Basin: VERMILLION
Management Unit:
Screen Type:
Casing Type: PVC
Casing Top Elevation: 1320.18 I
Casing Stick-up: 2.14
Well Maintenance Date:
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:

Location: 098N-50W-29/DDCD 6
Longitude: 90.4610

0 - 1 Topsoil
1 - 26 Clay, yellow-brown, pebbly (till)
26 - 70 Clay, gray, pebbly (till)
APPENDIX B

Logs of drill holes used in figures 4, 5, and 7

LOCATION

The logs are listed by smallest township number, then the smallest range number, the smallest section number, and then by quarter section: NE = A; NW = B; SW = C; SE = D. A comparison of LEGAL LOCATION and LOCATION is as follows. A LEGAL LOCATION of NW\(\frac{1}{4}\)SE\(\frac{3}{4}\)NE\(\frac{1}{4}\)SW\(\frac{1}{4}\) sec. 30, T. 99 N., R. 64 W., is the same as a LOCATION of 099N-64W-30CADB. In some LOCATIONS, the smallest quarter section may be followed by the number 1 or 2 which indicates that more than one log may exist for that particular location.

LATITUDE and LONGITUDE

The format is DD.MMSS where D is degrees, M is minutes, and S is seconds.

DRILLING COMPANY

SDGS is an abbreviation for South Dakota Geological Survey.

TOTAL DRILL HOLE DEPTH and SCREEN LENGTH

The numbers are presented in feet.

SCREEN TYPE and CASING TYPE

PVC – polyvinyl chloride; MFG. – manufactured; SCH. – abbreviation for schedule and refers to casing thickness; HML – homemade.

CASING TOP ELEVATION and GROUND SURFACE ELEVATION

The numbers are presented in feet above mean sea level. I - the elevation was determined using a surveying instrument. T - the elevation was estimated from 7½-minute series topographic map.

CASING DIAMETER

The numbers are presented in inches.
Bottom of well at 527 feet. Two 5-foot sandpoints glued together.

- 0 - 10 Clay, tan, silty, very sandy; drills fast (tilt?)
- 10 - 21 Clay, tan, silty (tilt?)
- 21 - 41 Sand and gravel, fine sand to coarse gravel; with clay layers
- 41 - 51 Clay, white-tan, silty; calcareous, some sand (Niobrara Formation)
- 51 - 87 Clay, medium-brown, silty; calcareous (Niobrara Formation)
- 87 - 140 Clay, light-gray, silty (Carli|le Shale)
- 140 - 205 Clay, light- to medium-gray, silty; hard layer at 156 feet (Carli|le Shale)
- 205 - 280 Clay, medium-gray, silty, sandy (Carli|le Shale)
- 280 - 314 Clay, medium-brown, silty; calcareous (Carli|le Shale)
- 314 - 349 Clay, medium-brown; white flecks, grainy texture, very calcareous (Greenhorn Limestone)
- 349 - 370 Clay, light-gray, silty (Graneros Shale)
- 370 - 465 Sand, fine; interbedded with gray clay (Dakota Formation)
- 465 - 536 Sand, fine; hard layers at 477 feet and 525 feet, hard layer with pyrite at 535 feet (Dakota Formation)
- 536 - 537 Quartzite; hard, there was actually no penetration in this interval and no sample was obtained (Sioux Quartzite)
Drilling Method: ROTARY
Test Hole Number: SFB-183
Spontaneous Potential: X
Natural Gamma: X
Extra: X

Samples:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 12</td>
<td>Clay, tan, silty, sandy, pebbly (till)</td>
</tr>
<tr>
<td>12 - 29</td>
<td>Clay, medium-gray, silty, sandy, pebbly (till)</td>
</tr>
<tr>
<td>29 - 32</td>
<td>Sand, fine to medium</td>
</tr>
<tr>
<td>32 - 40</td>
<td>Clay, medium-gray, silty, sandy, pebbly (till)</td>
</tr>
<tr>
<td>40 - 49</td>
<td>Silt, gray, with very fine sand</td>
</tr>
<tr>
<td>49 - 68</td>
<td>Sand, medium</td>
</tr>
<tr>
<td>68 - 83</td>
<td>Clay, medium-gray, silty (till?)</td>
</tr>
<tr>
<td>83 - 117</td>
<td>Sand and gravel, fine sand to fine gravel!</td>
</tr>
<tr>
<td>117 - 124</td>
<td>Clay, gray</td>
</tr>
<tr>
<td>124 - 127</td>
<td>Sand</td>
</tr>
<tr>
<td>127 - 130</td>
<td>Clay, gray</td>
</tr>
<tr>
<td>130 - 139</td>
<td>Sand</td>
</tr>
<tr>
<td>139 - 166</td>
<td>Clay, light-gray, very sandy; shaley (till)</td>
</tr>
<tr>
<td>166 - 167</td>
<td>Unknown; hard layer, many pink chips in cuttings, probably a quartzite boulder</td>
</tr>
<tr>
<td>167 - 170</td>
<td>Sand (?)</td>
</tr>
<tr>
<td>170 - 301</td>
<td>Clay, light- to dark-gray, silty (Carlile Shale)</td>
</tr>
<tr>
<td>301 - 350</td>
<td>Clay, medium-brown, silty; grainy texture, very calcareous (Greenhorn Limestone)</td>
</tr>
<tr>
<td>350 - 363</td>
<td>Clay, light-gray, silty (Graneros Shale)</td>
</tr>
<tr>
<td>363 - 374</td>
<td>Clay, light-gray; with fine quartz sand (Graneros Shale)</td>
</tr>
<tr>
<td>374 - 387</td>
<td>Sand, fine (Dakota Formation)</td>
</tr>
<tr>
<td>387 - 401</td>
<td>Clay, gray; with some sand layers (Dakota Formation)</td>
</tr>
<tr>
<td>401 - 411</td>
<td>Sand (Dakota Formation)</td>
</tr>
<tr>
<td>411 - 421</td>
<td>Sand, clayey (Dakota Formation)</td>
</tr>
<tr>
<td>421 - 428</td>
<td>Sand (Dakota Formation)</td>
</tr>
<tr>
<td>428 - 433</td>
<td>Clay, gray, sandy (Dakota Formation)</td>
</tr>
<tr>
<td>433 - 450</td>
<td>Sand (Dakota Formation)</td>
</tr>
<tr>
<td>450 - 459</td>
<td>Clay, gray; sand in the upper part (Dakota Formation)</td>
</tr>
<tr>
<td>459 - 461</td>
<td>Sand (?)</td>
</tr>
<tr>
<td>461 - 465</td>
<td>Sand (Dakota Formation)</td>
</tr>
<tr>
<td>465 - 470</td>
<td>Clay, dark-gray (Dakota Formation)</td>
</tr>
<tr>
<td>470 - 477</td>
<td>Clay, gray, sandy (Dakota Formation)</td>
</tr>
<tr>
<td>477 - 480</td>
<td>Sand (Dakota Formation)</td>
</tr>
<tr>
<td>480 - 485</td>
<td>Clay, dark-gray, sandy, with white clay mixed in</td>
</tr>
<tr>
<td>485 - 494</td>
<td>Quartzite (?)</td>
</tr>
<tr>
<td>494 - 495</td>
<td>Quartzite; hard, there was actually no penetration in this interval and no sample was obtained (Sioux Quartzite)</td>
</tr>
</tbody>
</table>

County: LINCOLN
Legal Location: NW NW SW NW sec. 16, T. 098 N., R. 50 W.
Latitude: 43.1844
Longitude: 96.4559

Land Owner:
Project: SIOUX FALLS-BRANDON STUDY
Drilling Company: SDGS
Driller: L. HELSETH/M. KOFFLER
Geologist: D. I'LES

Location: 098N-50W-16BCBB
Driller's Log: X
Geologist's Log: X

68
Date Drilled: 08-13-1980
Drilling Method: ROTARY
Test Hole Number: SFH-186

Ground Surface Elevation: 1343.00 T
Total Drill Hole Depth: 762
USGS Hydrological Unit Code: 10170102
USGS Hydrological Unit Code: 10170202

Electric Log Information:
Spontaneous Potential: X
Natural Gamma: X
Single Point Resistivity: X
Extra:

Samples:
0 - 10 Clay, light-gray to brown, silty, sandy, pebbly (till)
10 - 25 Clay, yellowish-brown, silty, sandy, pebbly (till)
25 - 94 Clay, gray, silty, pebbly; rock at 86 feet (till)
94 - 129 Sand and gravel, medium sand to coarse gravel; with cobbles and much coal
129 - 150 Clay, gray; with light-gray chalk cuttings, calcareous (till)?
150 - 212 Clay, gray, silty, pebbly; noncalcareous (till)
212 - 378 Clay, gray; noncalcareous, hard layer from 288 to 292 feet (Carliny Shale)
378 - 416 Chalk(?), dark-gray to brown; with white flecks, also some pieces of white chalk or limestone in the samples (Greenhorn Limestone)
416 - 430 Clay, light- to dark-gray; slightly calcareous (Grueneros Shale)
430 - 444 Sand, white, fine (Dakota Formation)
444 - 449 Clay, gray (Dakota Formation)
449 - 452 Sand (Dakota Formation)
452 - 456 Clay, gray (Dakota Formation)
456 - 472 Sand (Dakota Formation)
472 - 486 Clay, gray; interbedded with sand (Dakota Formation)
486 - 511 Sand (Dakota Formation)
511 - 538 Sand; with some clay (Dakota Formation)
538 - 546 Sand (Dakota Formation)
546 - 615 Clay, gray; interbedded with some sand (Dakota Formation)
615 - 620 Sand (Dakota Formation)
620 - 634 Clay, gray; interbedded with some sand (Dakota Formation)
634 - 639 Sand (Dakota Formation)
639 - 647 Clay, gray (Dakota Formation)
647 - 654 Sand (Dakota Formation)
654 - 658 Clay, gray (Dakota Formation)
658 - 752 Sand (Dakota Formation)
752 - 761 Clay, white, sandy; hard, weathered quartzite(?) (Sioux Quartzite)
761 - 762 Quartzite; hard, there was actually no penetration in this interval and no sample was obtained (Sioux Quartzite)

County: LINCOLN
Legal Location: SW SW SW SW sec. 16, T. 089 N., R. 30 W.
Latitude: 43.1806

Land Owner:
Project: WATER RIGHTS
Drilling Company: HURON DRILLING
Driller: S. KUEHL
Geologist:
Date Drilled: 06-16-1977
Drilling Method: ROTARY
Ground Surface Elevation: 1327.00 T
Total Drill Hole Depth: 615
Test Hole Number:
Water Rights Well: LN-77A
Other Well Name:
Basin: VERMILLION
Aquifer: DAKOTA

Location: 089N-30W-16CCCC
Longitude: 96.4558
Management Unit: Screen Length: Casing Diameter: 2.0
Casing Type: STEEL Total Casing and Screen: 609.0
Casing Top Elevation: 1330.64 I
Casing Stick-up: Well Maintenance Date: USGS Hydrological Unit Code: 10170102
USGS Hydrological Unit Code: 10170102 Electric Log Information:
Sponaneous Potential:

Natural Gamma: X

samples:

This lithologic log differs from the original driller's log and reflects a reinterpretation of the gamma geophysical log by D. Iles, 1981. Worthing Quadrangle.

0 - 24 Clay, yellow (till)
34 - 70 Clay, blue (till)
73 - 80 Sand, fine
80 - 108 Sand, coarse
108 - 120 Chalk (Niobrara Formation)
120 - 355 Shale (Carliile Shale)
355 - 417 Limestone, shale
417 - 455 Shale (Graneros Shale)
455 - 485 Sand; hard (Dakota Formation)
485 - 495 Sand; fair (Dakota Formation)
495 - 515 Shale; interbedded with sand (Dakota Formation)
515 - 531 Shale (Dakota Formation)
531 - 560 Shale; sand streak at 550 feet (Dakota Formation)
560 - 615 Sand; fair (Dakota Formation?)

County: LINCOLN Location: 098N-50W-20ADDD
Legal Location: SE SE NE sec. 20, T. 098 N., R. 50 W. Longitude: 96.4602
Latitude: 43.1741
Land Owner:

Project: WATER RIGHTS Driller's Log: X
Drilling Company: HURON DRILLING Geologist's Log:
Drilling Method: ROTARY

Date Drilled: 02-27-1979 Test Hole Number:
Ground Surface Elevation: 1332.09 I SDGS Well Name:
Total Drill Hole Depth: 641 Aquifer: DAKOTA
Water Rights Well: LN-79B

Other Well Name:

Basin: VERMILLION

Screen Type: Screen Length:
Casing Type: PVC Casing Diameter: 2.0
Casing Top Elevation: 1315.69 I Total Casing and Screen: 612.0
Casing Stick-up: 3.60 Well Maintenance Date: 10-06-1981

USGS Hydrological Unit Code: 10170102 Electric Log Information:

Spontaneous Potential:

Single Point Resistivity: X

Natural Gamma: X

Extra:
This log differs from the original driller's log and reflects a reinterpretation by D. Iles using the geophysical log. Worthing Quadrangle.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>Topsoil</td>
</tr>
<tr>
<td>3 - 24</td>
<td>Clay, yellow</td>
</tr>
<tr>
<td>24 - 120</td>
<td>Clay, blue</td>
</tr>
<tr>
<td>120 - 156</td>
<td>Sand and gravel</td>
</tr>
<tr>
<td>156 - 328</td>
<td>Clay (Carlile Shale)</td>
</tr>
<tr>
<td>328 - 360</td>
<td>Limestone, shale (Greenhorn Limestone)</td>
</tr>
<tr>
<td>360 - 374</td>
<td>Clay (Grayrocks Shale)</td>
</tr>
<tr>
<td>374 - 394</td>
<td>Sand (Dakota Formation)</td>
</tr>
<tr>
<td>394 - 496</td>
<td>Sand, clayey; interbedded with clay and sand layers (Dakota Formation)</td>
</tr>
<tr>
<td>496 - 555</td>
<td>Sand; hard from 517 to 523 feet (Dakota Formation)</td>
</tr>
<tr>
<td>555 - 640</td>
<td>Sand, clayey; interbedded with clay (Dakota Formation)</td>
</tr>
<tr>
<td>640 - 641</td>
<td>Quartzite; hard, no sample was obtained and penetration was only a few inches (Sioux Quartzite)</td>
</tr>
</tbody>
</table>

County: LINCOLN
Location: 098N-50W-32AAAAA 1
Latitude: 43.1638
Longitude: 96.4602

Drilling Company: HURON DRILLING
Geologist: S. KUEHL
Date Drilled: 06-17-1977
Ground Surface Elevation: 1315.00 T
Total Drill Hole Depth: 635
Water Rights Well: LN-77B
Other Well Name: VERMILLION
Management Unit:
Screen Type: PVC
Casing Type: PVC
Casing Top Elevation: 139.20
Casing Stick-up: 1.60
Well Maintenance Date: 07.20-1983
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential:
Natural Gamma: X
Single Point Resistivity: X
Extra:

Worthing Quadrangle.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>Topsoil</td>
</tr>
<tr>
<td>3 - 18</td>
<td>Clay, yellow</td>
</tr>
<tr>
<td>18 - 35</td>
<td>Clay, blue</td>
</tr>
<tr>
<td>35 - 50</td>
<td>Clay, blue; with sand streaks</td>
</tr>
<tr>
<td>50 - 63</td>
<td>Clay, blue</td>
</tr>
<tr>
<td>63 - 72</td>
<td>Chalk</td>
</tr>
<tr>
<td>72 - 351</td>
<td>Shale</td>
</tr>
</tbody>
</table>
351 - 627 Sandstone; with shale layers and silt (Dakota Formation)
627 - 635 Quartzite

County: LINCOLN
Location: 098N-50W-32AAA\+2 2
Legal Location: NE NE NE sec. 32, T. 098 N., R. 50 W.
Latitude: 43.1618
Longitude: 96.4602
Land Owner:
Project: WATER RIGHTS
Drilling Company: HURON DRILLING
Driller: L. PETERSON
Geologist: J. GOODMAN
Date Drilled: 08-06-1979
Ground Surface Elevation: 1317.00 T
Total Drill Hole Depth: 383
Water Rights Well: LN-79H
Other Well Name: LN-79-9
Basin: VERMILLION
Management Unit:
Screen Type: PVC, MPG.
Casing Type: PVC
Casing Top Elevation: 1318.68 I
Casing Stick-up:
Well Maintenance Date: 08-09-1979
USGS Hydrological Unit Code: 10170102
Electric Log Information:
Spontaneous Potential: Single Point Resistivity: X
Natural Gamma: X
Extra:
Samples:
Continuous recorder installed. Worthing Quadrangle.

0 - 25 Clay, yellow-brown, silty, pebbly (till)
25 - 68 Clay, gray, gravelly till from 50 feet; numerous chalk pebble (till)
68 - 82 Clay, gray-white effervescence (Niobrara Formation)
82 - 310 Clay, gray, greasy, good shale cuttings; also sandstone layer at 162 feet (Carlile Shale)
310 - 349 Limestone, gray and white chips; oil stain on drilling mud (Greenhorn Limestone)
349 - 365 Clay, gray-black, brittle, good shale cutting (Graneros Shale)
365 - 383 Sandstone, fine to medium; drilling speed indicates good open sand; hard zones (Dakota Formation)

County: LINCOLN
Location: 098N-50W-32DDDD 1
Legal Location: SE SE SE sec. 32, T. 098 N., R. 50 W.
Latitude: 43.1528
Longitude: 96.4602
Land Owner:
Project:
Drilling Company: SDGS
Driller: L. HELSETH
Geologist: D. ILES
Date Drilled: 11-07-1977
Ground Surface Elevation: 1327.17 I
Total Drill Hole Depth: 651
Water Rights Well: LN-77C
Other Well Name:
Driller’s Log:
Geologist’s Log: X
Drilling Method: ROTARY
Test Hole Number: LN-#2
SDGS Well Name:
LD-17C
Basin: VERMILLION
Aquifer: DAKOTA
Management Unit: Screen Type: PVC, MFQ, AND HM.
Screen Length: 24.0
Casing Type: PVC, SCH. 80
Casing Diameter: 2.0
Casing Top Elevation: 1329.27 I
Casing Stick-up: 2.10
Total Casing and Screen: 654.0
Well Maintenance Date: 07-20-1985
USGS Hydrological Unit Code: 10170102
Electric Log Information: Spontaneous Potential: X
Single Point Resistivity: X
Natural Gamma: X
Extra: Samples:

The screen consists of a 4-foot standpoint and 20 feet of shored casing above standpoint.
Worthing Quadrangle.

0 - 2 Toysoil, black
2 - 23 Clay, yellow-brown (till)
23 - 37 Clay, gray, silty, pebbly (till)
37 - 59 Clay, light-gray, and white marl
59 - 66 Sand and gravel, medium to coarse
66 - 75 Clay, light-gray, and white marl
75 - 105 Clay, gray (Niobrara Formation)
105 - 140 Clay, dark-gray (Carlile Shale)
140 - 315 Clay, gray, softer than interval from 105 to 140 feet, sandy in spots? (Carlile Shale)
315 - 322 Clay, brown; stiffly hard, very calcareous (Greenhorn Limestone)
322 - 358 Limestone: cemented, very hard (Greenhorn Limestone)
358 - 400 Clay, gray, silty; slightly calcareous, hard spot at 380 feet (Granetos Shale)
400 - 513 Sand, white, fine, clayey; some clay layers (Dakota Formation)
513 - 555 Sand, fine (Dakota Formation)
555 - 562 Clay (Dakota Formation)
562 - 608 Sand, fine (Dakota Formation)
608 - 621 Clay (Dakota Formation)
621 - 632 Sand, fine (Dakota Formation)
632 - 637 Sand, fine; some white gritty clay, harder than interval from 621 to 632 feet (Dakota Formation)
637 - 650 Sand; hard, weathered quartzite? (Dakota Formation?)
650 - 651 Quartzite; hard, no cavings were obtained (Sioux Quartzite)

County: LINCOLN
Location: 098N-51W-14FFFFI 1
Legal Location: SE SE SE se sec. 14, T. 09 N., R. 51 W.
Longitude: 96.4936
Latitude: 43.1806
Land Owner: Project: SIOUX FALLS-BRANDON STUDY
Driller Company: SDGS
Driller: L. KOGLIN/ M. KOFFLER
Date Drilled: 07-31-1980
Botum Ground Surface Elevation: 1365.00 T
Test Hole Number: SFB-180
Total Drain Hole Depth: 631
USGS Hydrological Unit Code: 0170102
Electric Log Information:
Spontaneous Potential: X
Single Point Resistivity: X
Natural Gamma: X
Extra:
Samples:

- 16 Clay, tan, silty, sandy, pebbly (till)
- 20 Sand, fine to medium
- 22 Clay, tan, silty, sandy, pebbly (till)
- 73 Clay, medium-gray, silty, sandy, pebbly (till)
- 107 Clay, tan-green, silty, pebbly, calcareous, drifts slower than interval from 22 to 73 feet (till)
- 223 Sand and gravel, fine sand to coarse, gravel; with some clay and some clay layers
- 342 Clay, gray, some sand (Carliile Shale)
- 389 Clay, medium-brown, silty, calcareous, harder than interval from 223 to 342 feet (Greenhorn Limestone)
- 397 Clay, gray (Graneros Shale)
- 423 Sand; interbedded with gray clay (Dakota Formation)
- 442 Sand; some clay (Dakota Formation)
- 446 Coal(?), black, soft (Dakota Formation)
- 462 Sand (Dakota Formation)
- 468 Clay, gray (Dakota Formation)
- 487 Sand (Dakota Formation)
- 509 Clay, gray, decreasing in sand content towards the bottom of the interval (Dakota Formation)
- 514 Sand (Dakota Formation)
- 517 Clay, gray (Dakota Formation)
- 525 Sand (Dakota Formation)
- 598 Clay, gray, sandy in spots (Dakota Formation)
- 630 Sand, fine to coarse; with white clay
- 631 Quartzite; hard, there was actually no penetration in this interval and no sample was obtained (Sioux Quartzite)

County: LINCOLN
Legal Location: NE NW NE sec. 02, T. 099 N., R. 20 W.
Latitude: 43.2553
Land Owner: Project: SIOUX FALLS-BRANDON STUDY
Drilling Company: SDGS
Driller: C. IRONICK
Geologist: D. ILES
Date Drilled: 09-25-1979
Ground Surface Elevation: 1418.00 T
Total Drill Hole Depth: 352
Water Rights Well: LN-791
Other Well Name:
Basis: BIG SIOUX
Management Unit: Screen Type: PVC, MEO
Casing Type: PVC
Casing Top Elevation: 1418.90 ft
Casing Stick-up:
Well Maintenance Date:
USGS Hydrological Unit Code: 10170203
Electric Log Information:
Spontaneous Potential: X
Natural Gamma: Single Point Resistivity: X
Samples:

Location: 099N-50W-02AABA 1
Longitude: 96.4237

Aquifer: DAKOTA
Screen Length: 10.0
Casing Diameter: 2.6
Total Casing and Screen:
Bottom of well at approximately 349 feet. Two 5-foot sandponts glued together.

0 - 2 Topsoil
14 - 18 Clay, brown-gray, silty, sandy (till)
18 - 28 Clay, red-brown, silty (till)
28 - 30 Clay, brown-ton, silty, sandy, gravelly; hard layer at 28 feet (till)
30 - 52 Clay, gray, silty (till)
52 - 74 Sand, medium to coarse; with gravel that coarsens downward
74 - 104 Sand and gravel, medium sand to medium gravel, slightly clayey
104 - 154 Clay, gray, silty (till)
154 - 162 Gravel, medium to coarse; with some coal
162 - 265 Clay, gray (Carlin Shale)
265 - 281 Limestone; with shale (Greenhorn Limestone)
281 - 309 Clay, gray; with some hard spots (Graneros Shale)
309 - 351 Sand, fine to medium; with some shale, much coal from 345 to 351 feet (Dakota Formation)
351 - 352 Quartzite; hard, there was actually no penetration in this interval and no sample was obtained (Sedex Quartzite)

County: LINCOLN
Legal Location: NE NW NE sec. 02, T. 099 N., R. 50 W.
Latitude: 43.2553
Longitude: 96.4237
Location: 099N-S0W-02AA3A 2

Land Owner:
Project: SE SO, DAK. UNIT STUDY
Drilling Company: SDGS
Driller: L. HELSETH
Geologist: D. ILES
Date Drilled: 10-22-1981
Ground Surface Elevation: 1420.00 T
Total Drill Hole Depth: 85
Test Hole Number:
Water Rights Well:
Other Well Name:
Basin: BIG SIOUX
Management Unit:
Screen Type: PVC, MFG.
Casing Type: PVC
Casing Top Elevation: 1420.42
Casing Stick-up:
USGS Hydrological Unit Code: 10170203
Electric Log Information:
Spontaneous Potential:
Natural Gamma:
Samples:
Bottom of well at 85 feet.

0 - 6 Clay, yellowish-brown, silty, sandy, pebbly (till)
6 - 19 Clay, brownish-gray, silty, sandy, pebbly (till)
19 - 36 Clay, brown, silty, sandy, pebbly (till)
36 - 54 Clay, gray, silty, sandy, pebbly (till)
54 - 85 Sand, medium to coarse
Geologic Data

County: LINCOLN
Legal Location: NW NW NW sec. 24, T. 099 N., R. 50 W.
Latitude: 43.3317
Land Owner:
Project: SIOUX FALLS-BRANDON STUDY
Drilling Company: SDGS
Driller: E. KOGLIN/M. KOFFLER
Geologist: D. ILES
Date Drilled: 06-30-1980
Ground Surface Elevation: 1406.00 T
Total Drill Hole Depth: 698
USGS Hydrological Unit Code: 10170203
Electric Log Information:
Spontaneous Potential: X
Natural Gamma: Extra
Test Hole Number: SFB-165
Driller's Log:
Geologist's Log: X
Drilling Method: ROTARY
Single Point Resistivity: X

Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 13</td>
<td>Clay, tan, silty, sandy, pebbly; with some pieces of white clay (till)</td>
</tr>
<tr>
<td>13 - 17</td>
<td>Clay, gray-brown, silty, sandy, pebbly; very shaly (till)</td>
</tr>
<tr>
<td>17 - 69</td>
<td>Clay, medium-gray, silty, sandy, pebbly (till)</td>
</tr>
<tr>
<td>69 - 100</td>
<td>Sand, fine to medium</td>
</tr>
<tr>
<td>100 - 108</td>
<td>Sand, fine to medium, clayey</td>
</tr>
<tr>
<td>108 - 117</td>
<td>Clay, medium-gray, silty, sandy, pebbly (till)</td>
</tr>
<tr>
<td>117 - 123</td>
<td>Sand, fine to medium</td>
</tr>
<tr>
<td>123 - 126</td>
<td>Clay, dark-gray, very silty (till)</td>
</tr>
<tr>
<td>126 - 133</td>
<td>Gravel, coarse</td>
</tr>
<tr>
<td>133 - 151</td>
<td>Clay, light- to medium-gray, silty, sandy (till)</td>
</tr>
<tr>
<td>151 - 175</td>
<td>Clay, dark-gray; very calcareous (Niobrara Formation)</td>
</tr>
<tr>
<td>175 - 195</td>
<td>Clay, dark-gray, noncalcareous (Carlile Shale)</td>
</tr>
<tr>
<td>195 - 402</td>
<td>Clay, gray, noncalcareous, very sticky, some light-gray marl cuttings in the samples (Carlile Shale)</td>
</tr>
<tr>
<td>402 - 432</td>
<td>Clay, dark-gray to light-gray to gray-brown; very calcareous to slightly calcareous, hard (Greenhorn Limestone)</td>
</tr>
<tr>
<td>432 - 453</td>
<td>Clay, light- to dark-gray; easy drilling with occasional hard spots (Graneros Shale)</td>
</tr>
<tr>
<td>453 - 476</td>
<td>Sand (Dakota Formation)</td>
</tr>
<tr>
<td>476 - 490</td>
<td>Clay, gray (Dakota Formation)</td>
</tr>
<tr>
<td>490 - 495</td>
<td>Clay, gray (Dakota Formation)</td>
</tr>
<tr>
<td>495 - 520</td>
<td>Sand; slightly cemened (Dakota Formation)</td>
</tr>
<tr>
<td>520 - 525</td>
<td>Clay, gray (Dakota Formation)</td>
</tr>
<tr>
<td>525 - 536</td>
<td>Sand; slightly cemened, hard layer at 536 feet (Dakota Formation)</td>
</tr>
<tr>
<td>536 - 548</td>
<td>Sand, clayey (Dakota Formation)</td>
</tr>
<tr>
<td>548 - 562</td>
<td>Clay, gray; hard, slightly calcareous (Dakota Formation)</td>
</tr>
<tr>
<td>562 - 589</td>
<td>Clay, gray, sandy; hard, noncalcareous (Dakota Formation)</td>
</tr>
<tr>
<td>589 - 600</td>
<td>Sand, clayey; drilled slightly faster than interval from 562 to 589 feet (Dakota Formation)</td>
</tr>
<tr>
<td>600 - 638</td>
<td>Sawn, cemened, some clay (Dakota Formation)</td>
</tr>
<tr>
<td>638 - 651</td>
<td>Clay, gray; very hard (Dakota Formation)</td>
</tr>
<tr>
<td>651 - 679</td>
<td>Sand, cemened, interbedded with gray clay (Dakota Formation)</td>
</tr>
<tr>
<td>679 - 698</td>
<td>Quartzite; hard, there was actually no penetration in this interval and no sample was obtained (Sioux Quartzite)</td>
</tr>
</tbody>
</table>
LatITUDE: 43.2829
LONGITUDE: 96.4227

PROJECT: SIOUX FALLS- BRANDON STUDY

DRILLING COMPANY: SDGS

DRILLER: C. BORWICK

GEOLOGIST: D. ILES

DATE DRILLED: 08-07-1979

GROUND SURFACE ELEVATION: 1463.00 T

TOTAL DRILL HOLE DEPTH: 143

USGS HYDROGEOLOGICAL UNIT CODE: 10170203

ELECTRIC LOG INFORMATION:

SPONTANEOUS POTENTIAL: X

NATURAL GAMMA: X

SINGLE POINT RESISTIVITY: X

SAMPLES:

0 - 31 Clay, light-brown-tan, silty, sandy, gravelly (till)
31 - 42 Clay, medium-gray, silty, sandy (till)
42 - 72 Clay, darker gray than interval from 31 to 42 feet, silty, sandy (till)
72 - 79 Sand and gravel, fine sand to medium gravel
79 - 95 Clay, medium-gray to dark-gray, silty, sandy (till)
95 - 129 Clay, light-gray, very sandy, silty, gravelly; calcareous (till)
129 - 135 Clay, tan, silty, sandy; calcareous (till)
135 - 137 Clay, medium-gray to dark-gray, silty, sandy; calcareous (till)
137 - 142 Clay, yellow-brown, silty, sandy; calcareous (till)
142 - 143 Quartztite, pink; hard, there was actually only a few inches of penetration achieved (Sioux Quartzite)

COUNTY: LINCOLN

LEGAL LOCATION: SE SE SE sec. 26, T. 100 N., R. 50 W.

LATITUDE: 43.2646

LOCATION: N00-S00-W00-D00

LONGITUDE: 96.4231

LAND OWNER:

PROJECT: SE SO. DAK. UNIT STUDY

DRILLING COMPANY: SDGS

DRILLER: L. HELSETH

GEOLOGIST: D. ILES

DATE DRILLED: 10-21-1983

GROUND SURFACE ELEVATION: 1448.00 T

TOTAL DRILL HOLE DEPTH: 187

USGS HYDROGEOLOGICAL UNIT CODE: 10170203

ELECTRIC LOG INFORMATION:

SPONTANEOUS POTENTIAL: X

NATURAL GAMMA: X

SINGLE POINT RESISTIVITY: X

SAMPLES:

0 - 24 Clay, yellow, silty, pebbly (till)
24 - 66 Clay, gray, silty, pebbly; rock at 63 feet (till)
66 - 83 Sand and gravel, medium to coarse sand and medium gravel
83 - 116 Silt, gray, clayey
116 - 151 Silt, yellow, clayey, pebbly
151 - 158 Silt, gray, clayey, pebbly
158 - 174 Clay, yellow, silty, pebbly
174 - 186 Sand, fine to medium; rock at 181 feet
186 - 187 Quartzite, pink; hard, there was actually only a few inches of penetration in this interval (Sioux Quartzite)
APPENDIX C

Soil property data for two till samples
(Core samples were taken from a drill hole adjacent to piezometers at site 1)

(All data in this appendix are from the
U.S. Bureau of Reclamation, Soil Mechanics Section, Denver, Colorado)

Description of soil trimmings from core samples of the till:

Sample 62Q-1: (weathered till from 5 to 7.5 feet) Grayish orange; poorly consolidated; structureless; chiefly silt- and clay-sized with minor amounts of sand-sized material and a few, subangular to subrounded, granitic rock fragments to about 3/4 inch in diameter; slightly ferruginous; moderately to highly effervescent in dilute hydrochloric acid; few small charcoal fragments; moderately to highly water absorptive; unctuous to plastic and sticky when wet

Sample 62Q-2: (unweathered till from 25 to 27.5 feet) Light gray; poorly consolidated; structureless; chiefly silt- and clay-sized with minor amounts of sand-sized material and a few, subangular to subrounded, granitic rock fragments to about 3/8 inch in diameter; moderately to highly effervescent in dilute hydrochloric acid; few small charcoal fragments; moderately to highly water absorptive; unctuous to plastic and sticky when wet

<table>
<thead>
<tr>
<th>Soil Property</th>
<th>62Q-1</th>
<th>62Q-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid limit</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>Plastic limit</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Plasticity index</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>2.63</td>
<td>2.63</td>
</tr>
<tr>
<td>Free swell expansion value</td>
<td>50</td>
<td>55</td>
</tr>
</tbody>
</table>
APPENDIX D

Water level data from site 1

Depth to water (ft) *

<table>
<thead>
<tr>
<th>Date</th>
<th>GT-1H</th>
<th>GT-1B</th>
<th>GT-1C</th>
<th>GT-1D</th>
<th>GT-1F</th>
<th>GT-1G</th>
<th>GT-1H</th>
<th>Open hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-22-84</td>
<td>flow</td>
<td>flow</td>
<td>47.94</td>
<td>27.00</td>
<td>28.00</td>
<td>16.33</td>
<td>4.88</td>
<td>4.83</td>
</tr>
<tr>
<td>11-14-84</td>
<td>flow</td>
<td>flow</td>
<td>47.17</td>
<td>25.13</td>
<td>27.87</td>
<td>14.76</td>
<td>4.87</td>
<td>4.88</td>
</tr>
<tr>
<td>11-19-84</td>
<td>--</td>
<td>--</td>
<td>47.00</td>
<td>24.76</td>
<td>27.85</td>
<td>14.45</td>
<td>5.08</td>
<td>5.00</td>
</tr>
<tr>
<td>12-13-84</td>
<td>ice</td>
<td>ice</td>
<td>46.24</td>
<td>23.00</td>
<td>27.72</td>
<td>13.15</td>
<td>5.33</td>
<td>5.30</td>
</tr>
<tr>
<td>01-28-85</td>
<td>ice</td>
<td>ice</td>
<td>44.83</td>
<td>19.87</td>
<td>26.97</td>
<td>11.41</td>
<td>5.98</td>
<td>6.02</td>
</tr>
<tr>
<td>02-08-85</td>
<td>ice</td>
<td>ice</td>
<td>44.18</td>
<td>19.19</td>
<td>26.70</td>
<td>11.09</td>
<td>6.23</td>
<td>6.28</td>
</tr>
<tr>
<td>02-22-85</td>
<td>--</td>
<td>--</td>
<td>43.72</td>
<td>18.33</td>
<td>26.40</td>
<td>10.72</td>
<td>5.94</td>
<td>6.10</td>
</tr>
<tr>
<td>03-25-85</td>
<td>flow</td>
<td>0.41</td>
<td>42.14</td>
<td>16.55</td>
<td>25.66</td>
<td>9.60</td>
<td>3.16</td>
<td>3.18</td>
</tr>
<tr>
<td>04-03-85</td>
<td>flow</td>
<td>0.35</td>
<td>41.76</td>
<td>16.06</td>
<td>25.48</td>
<td>9.28</td>
<td>3.15</td>
<td>3.09</td>
</tr>
<tr>
<td>04-18-85</td>
<td>flow</td>
<td>1.20</td>
<td>41.05</td>
<td>15.22</td>
<td>25.14</td>
<td>8.73</td>
<td>4.13</td>
<td>4.08</td>
</tr>
<tr>
<td>04-23-85</td>
<td>flow</td>
<td>0.17</td>
<td>40.84</td>
<td>14.96</td>
<td>25.04</td>
<td>8.58</td>
<td>1.85</td>
<td>1.74</td>
</tr>
<tr>
<td>05-22-85</td>
<td>flow</td>
<td>0.84</td>
<td>39.58</td>
<td>13.54</td>
<td>24.42</td>
<td>7.68</td>
<td>3.59</td>
<td>3.43</td>
</tr>
<tr>
<td>06-21-85</td>
<td>flow</td>
<td>1.61</td>
<td>38.31</td>
<td>12.33</td>
<td>23.82</td>
<td>7.05</td>
<td>4.91</td>
<td>4.79</td>
</tr>
<tr>
<td>06-26-85</td>
<td>flow</td>
<td>0.82</td>
<td>38.13</td>
<td>12.17</td>
<td>23.72</td>
<td>6.99</td>
<td>3.75</td>
<td>3.27</td>
</tr>
<tr>
<td>06-28-85</td>
<td>flow</td>
<td>flow</td>
<td>38.05</td>
<td>12.09</td>
<td>23.68</td>
<td>6.95</td>
<td>2.71</td>
<td>2.62</td>
</tr>
<tr>
<td>07-04-85</td>
<td>flow</td>
<td>flow</td>
<td>37.83</td>
<td>11.90</td>
<td>23.60</td>
<td>6.86</td>
<td>4.06</td>
<td>4.01</td>
</tr>
<tr>
<td>07-08-85</td>
<td>flow</td>
<td>0.60</td>
<td>37.65</td>
<td>11.74</td>
<td>23.49</td>
<td>6.78</td>
<td>4.74</td>
<td>4.64</td>
</tr>
<tr>
<td>07-31-85</td>
<td>flow</td>
<td>1.27</td>
<td>36.73</td>
<td>11.06</td>
<td>23.06</td>
<td>6.60</td>
<td>5.60</td>
<td>5.58</td>
</tr>
<tr>
<td>08-13-85</td>
<td>flow</td>
<td>0.36</td>
<td>36.24</td>
<td>10.72</td>
<td>22.82</td>
<td>6.54</td>
<td>4.11</td>
<td>4.13</td>
</tr>
<tr>
<td>09-04-85</td>
<td>flow</td>
<td>35.39</td>
<td>10.01</td>
<td>22.42</td>
<td>6.13</td>
<td>3.31</td>
<td>3.22</td>
<td>1.40</td>
</tr>
<tr>
<td>09-11-85</td>
<td>flow</td>
<td>35.16</td>
<td>9.90</td>
<td>22.32</td>
<td>6.01</td>
<td>2.99</td>
<td>2.90</td>
<td>1.01</td>
</tr>
<tr>
<td>10-18-85</td>
<td>flow</td>
<td>35.70</td>
<td>8.80</td>
<td>21.58</td>
<td>5.22</td>
<td>2.33</td>
<td>2.24</td>
<td>0.30</td>
</tr>
<tr>
<td>11-06-85</td>
<td>flow</td>
<td>32.97</td>
<td>8.27</td>
<td>21.20</td>
<td>4.90</td>
<td>2.85</td>
<td>2.80</td>
<td>0.90</td>
</tr>
<tr>
<td>11-20-85</td>
<td>flow</td>
<td>32.54</td>
<td>7.98</td>
<td>21.00</td>
<td>4.77</td>
<td>2.35</td>
<td>2.30</td>
<td>--</td>
</tr>
<tr>
<td>10-07-86</td>
<td>ice</td>
<td>ice</td>
<td>30.65</td>
<td>6.80</td>
<td>20.06</td>
<td>4.28</td>
<td>3.53</td>
<td>--</td>
</tr>
<tr>
<td>02-02-86</td>
<td>ice</td>
<td>ice</td>
<td>28.60</td>
<td>5.73</td>
<td>19.04</td>
<td>3.94</td>
<td>2.99</td>
<td>2.92</td>
</tr>
<tr>
<td>03-21-86</td>
<td>ice</td>
<td>ice</td>
<td>27.30</td>
<td>5.35</td>
<td>18.77</td>
<td>3.85</td>
<td>2.14</td>
<td>1.90</td>
</tr>
<tr>
<td>04-09-86</td>
<td>ice</td>
<td>ice</td>
<td>25.57</td>
<td>5.02</td>
<td>18.48</td>
<td>3.68</td>
<td>2.33</td>
<td>2.28</td>
</tr>
<tr>
<td>04-16-86</td>
<td>flow</td>
<td>24.98</td>
<td>4.95</td>
<td>18.39</td>
<td>3.67</td>
<td>2.19</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>05-15-86</td>
<td>flow</td>
<td>22.02</td>
<td>4.65</td>
<td>17.97</td>
<td>3.56</td>
<td>2.06</td>
<td>2.02</td>
<td>0.91</td>
</tr>
<tr>
<td>05-19-86</td>
<td>flow</td>
<td>21.58</td>
<td>4.72</td>
<td>17.92</td>
<td>3.55</td>
<td>2.74</td>
<td>2.38</td>
<td>0.70</td>
</tr>
</tbody>
</table>

* Depth to water in piezometers was measured from casing top.

Depth to water in open hole was measured from ground surface.

--- no measurement taken

flow: water was flowing over casing top

ice: water in casing was frozen
APPENDIX E

Water level data from site 2

Depth to water (ft)*

<table>
<thead>
<tr>
<th>Date</th>
<th>OT-1A 2A</th>
<th>OT-1B 2B</th>
<th>OT-1C 2C</th>
<th>OT-1D 2D</th>
<th>OT-1E 2E</th>
<th>OT-1F 2F</th>
<th>Open hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-22-84</td>
<td>14.80</td>
<td>25.77</td>
<td>44.77</td>
<td>6.50</td>
<td>63.95</td>
<td>6.05</td>
<td>4.70</td>
</tr>
<tr>
<td>11-14-84</td>
<td>13.28</td>
<td>24.05</td>
<td>42.87</td>
<td>6.25</td>
<td>61.43</td>
<td>5.97</td>
<td>4.70</td>
</tr>
<tr>
<td>11-19-84</td>
<td>13.00</td>
<td>23.70</td>
<td>42.45</td>
<td>6.30</td>
<td>60.68</td>
<td>6.06</td>
<td>4.80</td>
</tr>
<tr>
<td>12-13-84</td>
<td>11.86</td>
<td>22.12</td>
<td>40.62</td>
<td>6.48</td>
<td>58.43</td>
<td>6.24</td>
<td>--</td>
</tr>
<tr>
<td>01-28-85</td>
<td>10.33</td>
<td>19.46</td>
<td>37.38</td>
<td>7.02</td>
<td>49.32</td>
<td>6.75</td>
<td>--</td>
</tr>
<tr>
<td>02-09-85</td>
<td>10.09</td>
<td>18.89</td>
<td>36.63</td>
<td>7.21</td>
<td>46.09</td>
<td>6.97</td>
<td>--</td>
</tr>
<tr>
<td>02-22-85</td>
<td>9.83</td>
<td>18.26</td>
<td>35.65</td>
<td>7.14</td>
<td>29.60</td>
<td>6.88</td>
<td>--</td>
</tr>
<tr>
<td>03-25-85</td>
<td>9.16</td>
<td>16.88</td>
<td>33.61</td>
<td>6.19</td>
<td>14.64</td>
<td>5.92</td>
<td>--</td>
</tr>
<tr>
<td>04-03-85</td>
<td>9.72</td>
<td>16.55</td>
<td>33.08</td>
<td>6.22</td>
<td>12.81</td>
<td>5.87</td>
<td>--</td>
</tr>
<tr>
<td>04-18-85</td>
<td>6.69</td>
<td>15.95</td>
<td>32.12</td>
<td>5.70</td>
<td>10.52</td>
<td>5.41</td>
<td>4.10</td>
</tr>
<tr>
<td>04-23-85</td>
<td>8.58</td>
<td>15.75</td>
<td>31.84</td>
<td>3.08</td>
<td>9.88</td>
<td>2.95</td>
<td>1.60</td>
</tr>
<tr>
<td>05-22-85</td>
<td>7.71</td>
<td>14.69</td>
<td>30.10</td>
<td>3.84</td>
<td>6.04</td>
<td>3.51</td>
<td>2.20</td>
</tr>
<tr>
<td>06-21-85</td>
<td>7.05</td>
<td>13.66</td>
<td>28.45</td>
<td>4.87</td>
<td>5.03</td>
<td>4.57</td>
<td>3.40</td>
</tr>
<tr>
<td>06-26-85</td>
<td>6.98</td>
<td>13.49</td>
<td>28.18</td>
<td>4.52</td>
<td>5.03</td>
<td>4.36</td>
<td>3.05</td>
</tr>
<tr>
<td>06-28-85</td>
<td>6.94</td>
<td>13.44</td>
<td>28.08</td>
<td>3.30</td>
<td>4.95</td>
<td>3.17</td>
<td>2.05</td>
</tr>
<tr>
<td>07-04-85</td>
<td>6.84</td>
<td>13.38</td>
<td>27.78</td>
<td>4.12</td>
<td>4.89</td>
<td>3.78</td>
<td>2.55</td>
</tr>
<tr>
<td>07-31-85</td>
<td>6.53</td>
<td>12.45</td>
<td>26.41</td>
<td>5.98</td>
<td>5.23</td>
<td>5.64</td>
<td>4.45</td>
</tr>
<tr>
<td>08-13-85</td>
<td>6.47</td>
<td>12.15</td>
<td>25.86</td>
<td>6.04</td>
<td>5.59</td>
<td>5.74</td>
<td>4.45</td>
</tr>
<tr>
<td>09-04-85</td>
<td>6.30</td>
<td>11.62</td>
<td>24.80</td>
<td>5.52</td>
<td>5.62</td>
<td>5.25</td>
<td>4.00</td>
</tr>
<tr>
<td>09-11-85</td>
<td>6.24</td>
<td>11.44</td>
<td>24.54</td>
<td>4.65</td>
<td>5.49</td>
<td>4.42</td>
<td>3.12</td>
</tr>
<tr>
<td>10-18-85</td>
<td>5.53</td>
<td>10.50</td>
<td>22.90</td>
<td>3.09</td>
<td>3.98</td>
<td>2.80</td>
<td>1.35</td>
</tr>
<tr>
<td>11-06-85</td>
<td>5.22</td>
<td>10.00</td>
<td>22.10</td>
<td>3.66</td>
<td>3.75</td>
<td>3.35</td>
<td>2.20</td>
</tr>
<tr>
<td>11-20-85</td>
<td>5.11</td>
<td>9.73</td>
<td>21.61</td>
<td>3.18</td>
<td>3.72</td>
<td>2.87</td>
<td>--</td>
</tr>
<tr>
<td>01-07-86</td>
<td>11.28</td>
<td>14.23</td>
<td>30.33</td>
<td>4.60</td>
<td>6.81</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>02-26-86</td>
<td>9.23</td>
<td>13.90</td>
<td>13.20</td>
<td>5.10</td>
<td>5.35</td>
<td>4.70</td>
<td>--</td>
</tr>
<tr>
<td>03-21-86</td>
<td>8.65</td>
<td>13.18</td>
<td>6.29</td>
<td>3.05</td>
<td>5.00</td>
<td>2.95</td>
<td>1.90</td>
</tr>
<tr>
<td>04-09-86</td>
<td>7.95</td>
<td>12.49</td>
<td>3.57</td>
<td>2.10</td>
<td>4.03</td>
<td>1.60</td>
<td>0.50</td>
</tr>
<tr>
<td>04-16-86</td>
<td>7.75</td>
<td>12.17</td>
<td>3.07</td>
<td>1.65</td>
<td>3.74</td>
<td>1.31</td>
<td>0.00</td>
</tr>
<tr>
<td>05-15-86</td>
<td>6.82</td>
<td>11.31</td>
<td>2.40</td>
<td>2.98</td>
<td>3.02</td>
<td>2.53</td>
<td>1.18</td>
</tr>
<tr>
<td>05-19-86</td>
<td>6.79</td>
<td>11.18</td>
<td>2.67</td>
<td>2.94</td>
<td>3.11</td>
<td>2.57</td>
<td>--</td>
</tr>
</tbody>
</table>

* Depth to water in piezometers was measured from casing top. Depth to water in open hole was measured from ground surface. --: no measurement taken
APPENDIX F

Water level data from site 3

Depth to water (ft)*

<table>
<thead>
<tr>
<th>Date</th>
<th>GT-LN 3A</th>
<th>GT-LN 3B</th>
<th>GT-LN 3C</th>
<th>GT-LN 3D</th>
<th>GT-LN 3E</th>
<th>GT-LN 3F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-22-84</td>
<td>46.25</td>
<td>10.68</td>
<td>7.61</td>
<td>27.08</td>
<td>40.72</td>
<td></td>
</tr>
<tr>
<td>11-14-84</td>
<td>39.00</td>
<td>8.77</td>
<td>7.45</td>
<td>20.37</td>
<td>6.85</td>
<td></td>
</tr>
<tr>
<td>11-19-84</td>
<td>37.72</td>
<td>8.71</td>
<td>7.46</td>
<td>19.21</td>
<td>6.08</td>
<td></td>
</tr>
<tr>
<td>12-13-84</td>
<td>58.02</td>
<td>32.42</td>
<td>8.65</td>
<td>7.55</td>
<td>15.00</td>
<td>5.52</td>
</tr>
<tr>
<td>01-28-85</td>
<td>7.90</td>
<td>22.18</td>
<td>9.02</td>
<td>7.96</td>
<td>10.44</td>
<td>6.56</td>
</tr>
<tr>
<td>02-08-85</td>
<td>8.00</td>
<td>20.53</td>
<td>9.22</td>
<td>8.18</td>
<td>10.01</td>
<td>6.73</td>
</tr>
<tr>
<td>02-22-85</td>
<td>8.40</td>
<td>18.62</td>
<td>9.52</td>
<td>8.52</td>
<td>9.63</td>
<td>6.95</td>
</tr>
<tr>
<td>03-25-85</td>
<td>8.14</td>
<td>15.75</td>
<td>9.10</td>
<td>7.72</td>
<td>8.88</td>
<td>7.32</td>
</tr>
<tr>
<td>04-03-85</td>
<td>8.00</td>
<td>15.10</td>
<td>8.86</td>
<td>7.52</td>
<td>8.70</td>
<td>7.34</td>
</tr>
<tr>
<td>04-18-85</td>
<td>7.76</td>
<td>13.97</td>
<td>7.91</td>
<td>6.30</td>
<td>8.26</td>
<td>7.43</td>
</tr>
<tr>
<td>04-23-85</td>
<td>7.46</td>
<td>13.47</td>
<td>7.34</td>
<td>4.80</td>
<td>8.07</td>
<td>7.42</td>
</tr>
<tr>
<td>05-22-85</td>
<td>6.84</td>
<td>9.85</td>
<td>4.32</td>
<td>3.24</td>
<td>6.20</td>
<td>6.75</td>
</tr>
<tr>
<td>06-21-85</td>
<td>5.88</td>
<td>8.31</td>
<td>5.55</td>
<td>4.68</td>
<td>5.22</td>
<td>5.81</td>
</tr>
<tr>
<td>06-26-85</td>
<td>5.63</td>
<td>8.15</td>
<td>5.83</td>
<td>4.79</td>
<td>5.17</td>
<td>5.66</td>
</tr>
<tr>
<td>07-04-85</td>
<td>5.45</td>
<td>7.84</td>
<td>4.98</td>
<td>3.65</td>
<td>4.99</td>
<td>5.37</td>
</tr>
<tr>
<td>07-31-85</td>
<td>5.72</td>
<td>7.29</td>
<td>6.77</td>
<td>5.93</td>
<td>5.02</td>
<td>4.92</td>
</tr>
<tr>
<td>08-13-85</td>
<td>6.05</td>
<td>7.22</td>
<td>7.43</td>
<td>6.32</td>
<td>5.35</td>
<td>4.94</td>
</tr>
<tr>
<td>09-04-85</td>
<td>5.90</td>
<td>7.05</td>
<td>7.06</td>
<td>5.85</td>
<td>5.57</td>
<td>5.20</td>
</tr>
<tr>
<td>09-11-85</td>
<td>5.11</td>
<td>5.60</td>
<td>5.31</td>
<td>6.70</td>
<td>6.97</td>
<td>5.81</td>
</tr>
<tr>
<td>10-18-85</td>
<td>5.15</td>
<td>5.96</td>
<td>4.48</td>
<td>3.19</td>
<td>4.71</td>
<td>5.26</td>
</tr>
<tr>
<td>11-06-85</td>
<td>5.30</td>
<td>5.63</td>
<td>4.83</td>
<td>3.78</td>
<td>4.31</td>
<td>5.28</td>
</tr>
<tr>
<td>11-20-85</td>
<td>5.30</td>
<td>5.53</td>
<td>4.95</td>
<td>3.65</td>
<td>4.21</td>
<td>5.38</td>
</tr>
<tr>
<td>03-21-86</td>
<td>3.97</td>
<td>4.52</td>
<td>4.00</td>
<td>1.88</td>
<td>4.55</td>
<td>6.10</td>
</tr>
<tr>
<td>04-09-86</td>
<td>2.90</td>
<td>3.47</td>
<td>3.50</td>
<td>1.92</td>
<td>3.84</td>
<td>5.67</td>
</tr>
<tr>
<td>04-16-86</td>
<td>2.88</td>
<td>3.36</td>
<td>3.15</td>
<td>1.36</td>
<td>3.70</td>
<td>5.51</td>
</tr>
<tr>
<td>05-15-86</td>
<td>3.56</td>
<td>3.40</td>
<td>4.13</td>
<td>3.17</td>
<td>3.20</td>
<td>4.18</td>
</tr>
<tr>
<td>05-19-86</td>
<td>3.96</td>
<td>3.23</td>
<td>3.12</td>
<td>4.28</td>
<td>3.46</td>
<td>3.71</td>
</tr>
</tbody>
</table>

* Depth to water in piezometers was measured from casing top.

--: no measurement taken
APPENDIX G. Water quality analyses from till and outwash

<table>
<thead>
<tr>
<th>Hydrologic unit</th>
<th>Piezometer or well</th>
<th>Sample ID</th>
<th>Name</th>
<th>Date sampled</th>
<th>Conductivity (μS)</th>
<th>NO₃-N</th>
<th>SO₄</th>
<th>Cl</th>
<th>F</th>
<th>NO₂-N</th>
<th>Fe</th>
<th>Mn</th>
<th>CaCO₃</th>
<th>Alk-T</th>
<th>HCO₃</th>
<th>Si</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weathered till</td>
<td>GTR-86-110</td>
<td>LN-1K</td>
<td>11</td>
<td>08-25-86</td>
<td>3160</td>
<td>2900</td>
<td>448</td>
<td>404</td>
<td>226</td>
<td>8.0</td>
<td>1900</td>
<td>8</td>
<td>0.28</td>
<td>0.68</td>
<td><0.05</td>
<td>5.10</td>
<td>1940</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-1L</td>
<td>13</td>
<td>08-25-86</td>
<td>3200</td>
<td>2910</td>
<td>180</td>
<td>427</td>
<td>159</td>
<td>11</td>
<td>1818</td>
<td>7</td>
<td>0.44</td>
<td>0.08</td>
<td><0.05</td>
<td>0.99</td>
<td>1720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-1M</td>
<td>16</td>
<td>08-25-86</td>
<td>2580</td>
<td>2240</td>
<td>122</td>
<td>362</td>
<td>117</td>
<td>13</td>
<td>1420</td>
<td>4</td>
<td>0.49</td>
<td>0.04</td>
<td>0.33</td>
<td>1.58</td>
<td>1380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2A</td>
<td>16</td>
<td>11-20-85</td>
<td>5130</td>
<td>5280</td>
<td>546</td>
<td>437</td>
<td>416</td>
<td>20</td>
<td>3600</td>
<td>7</td>
<td>0.69</td>
<td>0.50</td>
<td>0.43</td>
<td>1.68</td>
<td>2800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2D</td>
<td>15</td>
<td>11-20-85</td>
<td>4640</td>
<td>5180</td>
<td>288</td>
<td>466</td>
<td>463</td>
<td>10</td>
<td>3820</td>
<td>3</td>
<td>1.84</td>
<td><0.2</td>
<td>2.21</td>
<td>1.69</td>
<td>3070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2F</td>
<td>9</td>
<td>11-20-85</td>
<td>6170</td>
<td>6880</td>
<td>519</td>
<td>410</td>
<td>712</td>
<td>13</td>
<td>4730</td>
<td>6</td>
<td>2.36</td>
<td><0.2</td>
<td><0.05</td>
<td>0.05</td>
<td>3960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2I</td>
<td>11</td>
<td>08-27-86</td>
<td>7880</td>
<td>8700</td>
<td>672</td>
<td>391</td>
<td>979</td>
<td>15</td>
<td>6200</td>
<td>13</td>
<td>1.32</td>
<td><0.1</td>
<td><0.05</td>
<td>0.05</td>
<td>5020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2J</td>
<td>13</td>
<td>08-27-86</td>
<td>8760</td>
<td>9710</td>
<td>813</td>
<td>390</td>
<td>1070</td>
<td>18</td>
<td>6700</td>
<td>17</td>
<td>1.09</td>
<td>0.49</td>
<td><0.05</td>
<td>0.04</td>
<td>5380</td>
</tr>
<tr>
<td>Unweathered till</td>
<td>GTR-86-113</td>
<td>LN-1N</td>
<td>26</td>
<td>08-25-86</td>
<td>2050</td>
<td>1640</td>
<td>139</td>
<td>250</td>
<td>74</td>
<td>19</td>
<td>896</td>
<td>6</td>
<td>0.30</td>
<td>0.05</td>
<td>0.08</td>
<td>1.25</td>
<td>929</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-1O</td>
<td>36</td>
<td>08-26-86</td>
<td>2230</td>
<td>1780</td>
<td>205</td>
<td>238</td>
<td>70</td>
<td>20</td>
<td>1090</td>
<td>9</td>
<td>0.31</td>
<td>1.47</td>
<td><0.05</td>
<td>0.69</td>
<td>883</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-1P</td>
<td>46</td>
<td>08-26-86</td>
<td>2390</td>
<td>1920</td>
<td>243</td>
<td>238</td>
<td>66</td>
<td>20</td>
<td>1240</td>
<td>12</td>
<td>0.38</td>
<td><0.04</td>
<td>1.51</td>
<td>1.18</td>
<td>866</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-1Q</td>
<td>56</td>
<td>08-26-86</td>
<td>2490</td>
<td>2030</td>
<td>245</td>
<td>257</td>
<td>68</td>
<td>18</td>
<td>1320</td>
<td>16</td>
<td>0.34</td>
<td><0.04</td>
<td>1.94</td>
<td>1.20</td>
<td>922</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2A</td>
<td>27</td>
<td>11-20-85</td>
<td>3610</td>
<td>3380</td>
<td>457</td>
<td>372</td>
<td>123</td>
<td>22</td>
<td>2040</td>
<td>11</td>
<td>0.31</td>
<td>0.3</td>
<td>0.55</td>
<td>1.26</td>
<td>1440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2B</td>
<td>48</td>
<td>11-20-85</td>
<td>2640</td>
<td>2120</td>
<td>380</td>
<td>220</td>
<td>66</td>
<td>20</td>
<td>1280</td>
<td>16</td>
<td>0.40</td>
<td><0.2</td>
<td>0.60</td>
<td>0.91</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2C</td>
<td>68</td>
<td>11-20-85</td>
<td>3940</td>
<td>>1000</td>
<td>527</td>
<td>362</td>
<td>164</td>
<td>22</td>
<td>2350</td>
<td>13</td>
<td>0.48</td>
<td><0.2</td>
<td>0.50</td>
<td>1.33</td>
<td>1580</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2D</td>
<td>26</td>
<td>08-27-86</td>
<td>4810</td>
<td>4390</td>
<td>527</td>
<td>470</td>
<td>224</td>
<td>26</td>
<td>3000</td>
<td>24</td>
<td>0.26</td>
<td>0.13</td>
<td><0.05</td>
<td>1.95</td>
<td>2100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2E</td>
<td>56</td>
<td>08-27-86</td>
<td>3890</td>
<td>3380</td>
<td>457</td>
<td>372</td>
<td>123</td>
<td>22</td>
<td>2040</td>
<td>11</td>
<td>0.31</td>
<td>0.3</td>
<td>0.55</td>
<td>1.26</td>
<td>1440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2F</td>
<td>9</td>
<td>11-20-85</td>
<td>6170</td>
<td>6880</td>
<td>519</td>
<td>410</td>
<td>712</td>
<td>13</td>
<td>4730</td>
<td>6</td>
<td>2.36</td>
<td><0.2</td>
<td><0.05</td>
<td>0.05</td>
<td>3960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2I</td>
<td>11</td>
<td>08-27-86</td>
<td>7880</td>
<td>8700</td>
<td>672</td>
<td>391</td>
<td>979</td>
<td>15</td>
<td>6200</td>
<td>13</td>
<td>1.32</td>
<td><0.1</td>
<td><0.05</td>
<td>0.05</td>
<td>5020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN-2J</td>
<td>13</td>
<td>08-27-86</td>
<td>8760</td>
<td>9710</td>
<td>813</td>
<td>390</td>
<td>1070</td>
<td>18</td>
<td>6700</td>
<td>17</td>
<td>1.09</td>
<td>0.49</td>
<td><0.05</td>
<td>0.04</td>
<td>5380</td>
</tr>
<tr>
<td>Outwash</td>
<td>GTR-86-501</td>
<td>Schoffel- man 1<sup>1</sup></td>
<td>99</td>
<td>06-18-84</td>
<td>2120</td>
<td>1700</td>
<td>117</td>
<td>323</td>
<td>107</td>
<td>15</td>
<td>1200</td>
<td>6</td>
<td><0.06</td>
<td><0.2</td>
<td>4.34</td>
<td>0.19</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTR-86-501</td>
<td>78</td>
<td>06-14-84</td>
<td>2890</td>
<td>2170</td>
<td>114</td>
<td>428</td>
<td>149</td>
<td>15</td>
<td>1620</td>
<td>3</td>
<td><0.06</td>
<td><0.2</td>
<td>0.86</td>
<td>2.62</td>
<td>1680</td>
</tr>
</tbody>
</table>

1 SO₄ - dissolved solids; Na - sodium; Ca - calcium; Mg - magnesium; K - potassium; SO₄ - sulfate; Cl - chloride; F - fluorides; NO₃-N + NO₂-N - nitrate + nitrite as nitrogen; Fe - iron; Mn - manganese; CaCO₃ - hardness as calcium carbonate; Alk-T - total alkalinity; HCO₃ - bicarbonate
2 Se - selenium; As - arsenic
3 Depth is presented in feet below surface.
4 us - unit s
5 See table 7 for the locations of the Schoffelman and Suig wells.